A340229 Numbers m such that numbers m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 4k, 8k and 16k divisors respectively.
1124581, 2101621, 2135701, 3829381, 5801701, 6097381, 6453541, 6535861, 6609781, 6799621, 6972661, 7055317, 7527061, 8281381, 8485502, 8524981, 8883326, 9412981, 9895141, 11455141, 11901781, 12043621, 12929941, 13749061, 14747701, 15150901, 15504661, 15533941
Offset: 1
Keywords
Examples
tau(1124581) = 2, tau(1124582) = 4, tau(1124583) = 8, tau(1124584) = 16, tau (1124585) = 32.
Programs
-
Magma
[m: m in [1..10^7] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 4 and #Divisors(m) eq #Divisors(m + 3) / 8 and #Divisors(m) eq #Divisors(m + 4) / 16]
-
PARI
isok(m) = vector(4, k, numdiv(m+k))/numdiv(m) == [2,4,8,16]; \\ Michel Marcus, Jan 02 2021
Comments