cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340229 Numbers m such that numbers m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 4k, 8k and 16k divisors respectively.

Original entry on oeis.org

1124581, 2101621, 2135701, 3829381, 5801701, 6097381, 6453541, 6535861, 6609781, 6799621, 6972661, 7055317, 7527061, 8281381, 8485502, 8524981, 8883326, 9412981, 9895141, 11455141, 11901781, 12043621, 12929941, 13749061, 14747701, 15150901, 15504661, 15533941
Offset: 1

Views

Author

Jaroslav Krizek, Jan 01 2021

Keywords

Comments

Numbers m such that tau(m) = tau(m + 1)/2 = tau(m + 2)/4 = tau(m + 3)/8 = tau(m + 4)/16, where tau(k) = the number of divisors of k (A000005).
Quintuples of [tau(a(n)), tau(a(n) + 1), tau(a(n) + 2), tau(a(n) + 3), tau(a(n) + 4)] = [tau(a(n)), 2*tau(a(n)), 4*tau(a(n)), 8*tau(a(n)), 16*tau(a(n))]: [2, 4, 8, 16, 32], [2, 4, 8, 16, 32], [2, 4, 8, 16, 32], [2, 4, 8, 16, 32], [2, 4, 8, 16, 32], [2, 4, 8, 16, 32], ...
Corresponding values of numbers k: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, ...
Prime terms are in A100365; number 8485502 is the smallest composite term.
Subsequence of A063446, A100363 and A100364.

Examples

			tau(1124581) = 2, tau(1124582) = 4, tau(1124583) = 8, tau(1124584) = 16, tau (1124585) = 32.
		

Crossrefs

Programs

  • Magma
    [m: m in [1..10^7] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 4 and #Divisors(m) eq #Divisors(m + 3) / 8 and #Divisors(m) eq #Divisors(m + 4) / 16]
    
  • PARI
    isok(m) = vector(4, k, numdiv(m+k))/numdiv(m) == [2,4,8,16]; \\ Michel Marcus, Jan 02 2021