A340230 a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 4*k, 8*k, ..., (2^(n-1))*k divisors respectively.
1, 1, 193, 613, 1124581, 52071301, 213536830501
Offset: 1
Examples
a(4) = 613 because 613 is the smallest term of 4 consecutive numbers with this property: tau(613) = 2, tau(614) = 4, tau(615) = 8, tau(616) = 16.
Crossrefs
Programs
-
PARI
isok(m, n) = my(nb=numdiv(m)); for (k=1, n-1, if (numdiv(m+k)/nb != 2^k, return(0))); return (1); a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jan 05 2021
Extensions
a(7), as conjectured by Jaroslav Krizek, from Martin Ehrenstein, Feb 06 2021
Comments