cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340298 a(n) = a(floor(n/2)) + a(ceiling(n/2)) + n*floor(log_2(n)) for n >= 2, a(n) = n for n <= 1.

Original entry on oeis.org

0, 1, 4, 8, 16, 22, 28, 38, 56, 65, 74, 83, 92, 105, 118, 139, 176, 189, 202, 215, 228, 241, 254, 267, 280, 297, 314, 331, 348, 373, 398, 439, 512, 530, 548, 566, 584, 602, 620, 638, 656, 674, 692, 710, 728, 746, 764, 782, 800, 822, 844, 866, 888, 910, 932, 954
Offset: 0

Views

Author

Alois P. Heinz, Jan 03 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, (h->
          a(h)+a(n-h)+n*ilog2(n))(iquo(n, 2)))
        end:
    seq(a(n), n=0..55);

Formula

a(2^n) = A340257(n).

A369324 Array read by ascending antidiagonals: A(n,k) is the number of words of length n on an alphabet [k], avoiding 120 and 210, and sortable by a stack of depth 2, where k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 25, 16, 5, 1, 0, 1, 32, 65, 56, 25, 6, 1, 0, 1, 64, 161, 176, 105, 36, 7, 1, 0, 1, 128, 385, 512, 385, 176, 49, 8, 1, 0, 1, 256, 897, 1408, 1281, 736, 273, 64, 9, 1, 0, 1, 512, 2049, 3712, 3969, 2752, 1281, 400, 81, 10, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 20 2024

Keywords

Examples

			The array begins:
  0, 1,  1,   1,   1,    1, ...
  0, 1,  2,   3,   4,    5, ...
  0, 1,  4,   9,  16,   25, ...
  0, 1,  8,  25,  56,  105, ...
  0, 1, 16,  65, 176,  385, ...
  0, 1, 32, 161, 512, 1281, ...
  ...
		

Crossrefs

Cf. A000004 (k=0), A000012 (k=1), A000079 (k=2), A002064 (k=3), A340257 (k=4).
Cf. A000290 (n=2), A001477 (n=1), A057427 (n=0), A131423 (n=3), A164039.
Cf. A000035, A369325 (main diagonal), A369326.

Programs

  • Mathematica
    A[n_,k_]:=(1-(-1)^k)/2+2^n Sum[Binomial[n+k-3-2i,n-1],{i,0,Floor[(k-2)/2]}]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(n,k) = A000035(k) + 2^n*Sum_{i=0..floor((k-2)/2)} binomial(n + k - 3 - 2*i, n - 1).
Sum_{k=0..n} A(n-k,k) = A164039(n-1).
Showing 1-2 of 2 results.