A340273 a(n) is the number of divisors d of n such that phi(n)/phi(lpf(n)) mod phi(n)/phi(d) = 0, where phi is Euler's totient function (A000010), and lpf(n) is the least prime factor of n (A020639).
1, 2, 1, 3, 1, 4, 1, 4, 2, 4, 1, 6, 1, 4, 3, 5, 1, 6, 1, 6, 3, 4, 1, 8, 2, 4, 3, 6, 1, 8, 1, 6, 3, 4, 2, 9, 1, 4, 3, 8, 1, 8, 1, 6, 5, 4, 1, 10, 2, 6, 3, 6, 1, 8, 2, 8, 3, 4, 1, 12, 1, 4, 5, 7, 3, 8, 1, 6, 3, 8, 1, 12, 1, 4, 5, 6, 2, 8, 1, 10, 4, 4, 1, 12, 3, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
MATLAB
n=100; A=[]; for i=1:n d=divisors(i); t=0; for j=1:size(d,2) if checkCD(i,d(j))==1 t=t+1; end end A=[A t]; end function [res] = checkCD(n,d) if mod(n,d)==0 && mod(totient(n)/totient(min(factor(n))),totient(n)/totient(d))==0 res=1; else res=0; end end function [res] = totient(n) res=0; for i=1:n if gcd(i,n)==1 res=res+1; end end end
-
Maple
with(numtheory): a:= n-> `if`(n=1, 1, (f-> nops(select(d-> irem(phi(n)/phi(f), phi(n)/phi(d))=0, divisors(n))))(min(factorset(n)))): seq(a(n), n=1..100); # Alois P. Heinz, Feb 12 2021
-
Mathematica
Table[Function[{e, f}, DivisorSum[n, 1 &, Mod[e, f/EulerPhi[#]] == 0 &]] @@ {#2/#1, #2} & @@ {EulerPhi[FactorInteger[n][[1, 1]]], EulerPhi[n]}, {n, 86}] (* Michael De Vlieger, Feb 12 2021 *)
-
PARI
lpf(n) = if (n==1, 1, factor(n)[1,1]); a(n) = my(lp = lpf(n), t = eulerphi(n)); sumdiv(n, d, Mod(t/eulerphi(lp), t/eulerphi(d)) == 0); \\ Michel Marcus, Jan 03 2021
Comments