A340281 a(n) is the smallest prime p such that the number of distinct values of the ratio (number of nonnegative m < p such that m^k == m (mod p))/(number of nonnegative m < p such that -m^k == m (mod p)) is equal to n for some nonnegative k.
2, 3, 7, 19, 31, 163, 127, 1459, 211, 883, 811, 472393, 631, 8503057, 32077, 4051, 2311, 86093443, 4951, 6347497291777, 10531, 36451, 1299079, 251048476873, 8191, 388963, 5314411, 22051, 51031, 596046447753906250001, 28351, 411782264189299, 24571, 5904901
Offset: 1
Keywords
Examples
A334006 triangle begins: 1 | 1; 2 | 1, 1; : 1 distinct value 3 | 1, 3, 1; : 2 distinct values 4 | 1, 2, 1, 3; 5 | 1, 5, 1, 1, 1; : 2 distinct values 6 | 1, 3, 1, 3, 1, 3; 7 | 1, 7, 1, 3, 1, 3, 1; : 3 distinct values
Links
- Seth A. Troisi, Table of n, a(n) for n = 1..200
Programs
-
PARI
T(n, k) = sum(m=0, n-1, Mod(m, n)^k == m)/sum(m=0, n-1, -Mod(m, n)^k == m); \\ A334006 a(n) = my(p=2); while (#Set(vector(p, k, T(p,k))) != n, p = nextprime(p+1)); p; \\ Michel Marcus, Jan 21 2021
-
PARI
lista(nn, show=50) = my(c, v=vector(show)); v[1]=2; forprime(p=3, nn, c=1+numdiv(p\2^valuation(p-1, 2)); if(c<=show && !v[c], v[c]=p)); v; \\ Jinyuan Wang, Jan 23 2021
Extensions
More terms from Jinyuan Wang, Jan 23 2021
Typo in a(34) corrected by Seth A. Troisi, May 22 2022
Comments