A340349 a(n) is the smallest k such that A292849(k) = 2n-1.
1, 3, 13, 5, 57, 35, 21, 9, 241, 219, 49, 45, 169, 83, 73, 17, 993, 59, 941, 53, 3197, 51, 185, 93, 209, 81, 349, 85, 41, 89, 105, 33, 4033, 491, 4749, 247, 449, 227, 429, 363, 3249, 401, 193, 259, 233, 107, 117, 189, 697249, 1355, 173, 517, 473, 1091, 101, 231, 725, 305
Offset: 1
Crossrefs
Programs
-
MATLAB
function a = A340349(maxA292849) c = A340351(maxA292849,1); n = 1; run = 1; while run == 1 i = find(c==(n*2)-1); if ~isempty(i); a(n) = i(1); n = n+1; else run = 0; end end end function a = A340351(max_n,max_m) for n = 1:max_n m = 1; k = 1; while m < max_m+1 c = length(find(bitget(k,1:32)== 1)); if c == length(find(bitget(n*k,1:32)== 1)) a(n,m) = k; m = m+1; end k = k +1; end end end
-
PARI
f(n) = my(k=1); while ((hammingweight(k)) != hammingweight(k*n), k++); k; \\ A292849 a(n) = my(k=1); while(f(k) != 2*n-1, k++); k; \\ Michel Marcus, Jan 09 2021
Comments