A340403 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 4) missing three edges, where the removed edges are incident to different vertices in the 4-point set and none of the removed edges are incident to the same vertex in the other set.
3740, 66914, 1084508, 16848674, 256844060, 3881598434, 58426959068, 877826523554, 13177356595100, 197730071456354, 2966439163566428, 44500004197580834, 667523980478413340, 10013027130697435874, 150196578927865178588, 2252956887698068132514
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Mathematica
LinearRecurrence[{26,-196,486,-315},{3740,66914,1084508,16848674},20] (* Harvey P. Dale, Sep 18 2021 *)
Formula
a(n) = 343*15^(n-3) - 216*7^(n-3) + 4*3^(n-1) - 1.
From Stefano Spezia, Jan 06 2021: (Start)
G.f.: 2*x^4*(1870 - 15163*x + 38892*x^2 - 25515*x^3)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 7. (End)
Comments