cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340322 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2) dz dy dx.

Original entry on oeis.org

6, 4, 8, 5, 6, 9, 6, 4, 6, 5, 2, 1, 8, 4, 9, 7, 6, 9, 3, 7, 0, 8, 5, 8, 1, 3, 7, 2, 1, 0, 3, 3, 1, 5, 7, 6, 4, 1, 5, 2, 2, 6, 6, 3, 2, 5, 6, 1, 7, 9, 7, 6, 3, 1, 6, 8, 3, 1, 7, 3, 8, 8, 4, 2, 4, 5, 2, 5, 5, 5, 2, 3, 8, 7, 8, 4, 0, 0, 5, 6, 7, 8, 5, 4, 1, 8, 8, 8, 8, 7, 6, 4, 1, 9, 6, 8, 5, 7, 5, 5, 3, 9, 1, 7, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 04 2021

Keywords

Comments

Integral_{x=0..Pi/2, y=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2) dy dx = G*Pi, where G is Catalan's constant A006752.

Examples

			6.485696465218497693708581372103315764152266325617976316831738842452555238784...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2), x = 0..Pi/2, y = 0..Pi/2, z = 0..Pi/2));
  • PARI
    intnum(x = 0, Pi/2, intnum(y = 0, Pi/2, intnum(z = 0, Pi/2, log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2)))) \\ 20 valid digits

Formula

Equals limit_{n->infinity} Pi^3 * log(A340182(n)) / (8*n^3).
Equals Pi^3 * log(2)/8 + Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(3 + cos(2*x) + cos(2*y) + cos(2*z)) dz dy dx.

A340350 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2*sin(y)^2) dy dx.

Original entry on oeis.org

4, 9, 5, 3, 1, 6, 6, 1, 8, 6, 9, 2, 1, 2, 3, 3, 6, 4, 3, 0, 2, 9, 6, 5, 0, 4, 0, 4, 1, 1, 6, 1, 0, 4, 7, 5, 8, 8, 7, 1, 7, 8, 8, 4, 1, 7, 6, 7, 9, 7, 4, 5, 1, 8, 2, 4, 6, 4, 7, 4, 5, 9, 3, 4, 1, 1, 2, 3, 7, 7, 4, 0, 6, 1, 2, 4, 7, 1, 1, 3, 6, 1, 4, 3, 4, 5, 6, 5, 3, 5, 0, 3, 2, 6, 6, 3, 7, 5, 2, 8, 7, 7, 9, 2, 3, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2021

Keywords

Examples

			0.49531661869212336430296504041161047588717884176797451824647459341123774...
		

Crossrefs

Programs

  • Maple
    evalf(Pi * Integrate(log((1 + sqrt(1 + sin(x)^2))/2), x = 0..Pi/2), 120);
  • Mathematica
    RealDigits[N[Pi*Integrate[Log[(1 + Sqrt[1 + Sin[x]^2])/2], {x, 0, Pi/2}], 100]][[1]]
  • PARI
    Pi * intnum(x = 0, Pi/2, log((1 + sqrt(1 + sin(x)^2))/2))

Formula

Equals Pi * Integral_{x=0..Pi/2} log((1 + sqrt(1 + sin(x)^2))/2) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340165(n)) / (2*n^2) - log(2)).
Equals limit_{n->infinity} Pi^2 * (log(A340167(n)) / (4*n^2) - log(2)).

A340422 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + 2*sin(x)^2 + 2*sin(y)^2) dy dx.

Original entry on oeis.org

2, 5, 5, 1, 6, 9, 8, 8, 0, 6, 4, 0, 3, 9, 2, 4, 3, 6, 0, 9, 9, 3, 5, 6, 1, 6, 7, 8, 6, 0, 5, 6, 2, 9, 3, 1, 4, 3, 2, 5, 4, 3, 6, 9, 2, 6, 5, 4, 9, 2, 9, 5, 7, 2, 7, 5, 9, 1, 2, 2, 1, 3, 3, 9, 3, 8, 3, 5, 1, 7, 2, 0, 1, 7, 5, 7, 6, 9, 2, 2, 8, 6, 3, 6, 4, 8, 1, 7, 0, 5, 3, 4, 6, 6, 6, 6, 1, 4, 2, 4, 5, 7, 0, 6, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2021

Keywords

Examples

			2.551698806403924360993561678605629314325436926549295727591221339383517201757...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Pi*Integrate[(Log[1 + Sqrt[1 + 2/(3 - 2*Cos[x]^2)]] + Log[(1 + 2*Sin[x]^2)/4]/2), {x, 0, Pi/2}], 120], 10, 110][[1]]

Formula

Equals Pi * Integral_{x=0..Pi/2} (log(1 + sqrt(1 + 2/(3 - 2*cos(x)^2))) + log((1 + 2*sin(x)^2)/4)/2) dx.
Equals limit_{n->infinity} Pi^2 * log(A067518(n))/(4*n^2) - Pi^2*log(2)/4 - G*Pi, where G is Catalan's constant A006752.

A340396 a(n) = 2^(n^2 - 1) * Product_{j=1..n, k=1..n} (1 + sin(Pi*j/n)^2 + sin(Pi*k/n)^2).

Original entry on oeis.org

0, 1, 96, 93789, 1244160000, 241885578271872, 700566272328037500000, 30323548995402141685610526683, 19627362048402730985830806120284160000, 189995156103157091521654945902925881881155376920, 27506190205802587152768139358989866456457087869970721213256
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2 - 1) * Product[1 + Sin[Pi*j/n]^2 + Sin[Pi*k/n]^2, {j, 1, n}, {k, 1, n}], {n, 0, 10}] // Round

Formula

a(n) = 2^(n^2-1) * Product_{j=1..n, k=1..n} (3 - cos(Pi*j/n)^2 - cos(Pi*k/n)^2).
a(n) = 2^(n^2-1) * Product_{j=1..n, k=1..n} (2-cos(2*Pi*j/n)/2-cos(2*Pi*k/n)/2).
a(n) ~ 2^(n^2-1) * exp(4*c*n^2/Pi^2), where c = Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2 + sin(y)^2) dy dx = -Pi^2*(log(2) + log(sqrt(2)-1)/2) + Pi * Integral_{x=0..Pi/2} log(1 + sqrt(1 + 1/(1 + sin(x)^2))) dx = A340421 = 1.627008991085721315763766677017604437985734719035793082916212355323520649...
Showing 1-4 of 4 results.