cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340322 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2) dz dy dx.

Original entry on oeis.org

6, 4, 8, 5, 6, 9, 6, 4, 6, 5, 2, 1, 8, 4, 9, 7, 6, 9, 3, 7, 0, 8, 5, 8, 1, 3, 7, 2, 1, 0, 3, 3, 1, 5, 7, 6, 4, 1, 5, 2, 2, 6, 6, 3, 2, 5, 6, 1, 7, 9, 7, 6, 3, 1, 6, 8, 3, 1, 7, 3, 8, 8, 4, 2, 4, 5, 2, 5, 5, 5, 2, 3, 8, 7, 8, 4, 0, 0, 5, 6, 7, 8, 5, 4, 1, 8, 8, 8, 8, 7, 6, 4, 1, 9, 6, 8, 5, 7, 5, 5, 3, 9, 1, 7, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 04 2021

Keywords

Comments

Integral_{x=0..Pi/2, y=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2) dy dx = G*Pi, where G is Catalan's constant A006752.

Examples

			6.485696465218497693708581372103315764152266325617976316831738842452555238784...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2), x = 0..Pi/2, y = 0..Pi/2, z = 0..Pi/2));
  • PARI
    intnum(x = 0, Pi/2, intnum(y = 0, Pi/2, intnum(z = 0, Pi/2, log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2)))) \\ 20 valid digits

Formula

Equals limit_{n->infinity} Pi^3 * log(A340182(n)) / (8*n^3).
Equals Pi^3 * log(2)/8 + Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(3 + cos(2*x) + cos(2*y) + cos(2*z)) dz dy dx.

A340350 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2*sin(y)^2) dy dx.

Original entry on oeis.org

4, 9, 5, 3, 1, 6, 6, 1, 8, 6, 9, 2, 1, 2, 3, 3, 6, 4, 3, 0, 2, 9, 6, 5, 0, 4, 0, 4, 1, 1, 6, 1, 0, 4, 7, 5, 8, 8, 7, 1, 7, 8, 8, 4, 1, 7, 6, 7, 9, 7, 4, 5, 1, 8, 2, 4, 6, 4, 7, 4, 5, 9, 3, 4, 1, 1, 2, 3, 7, 7, 4, 0, 6, 1, 2, 4, 7, 1, 1, 3, 6, 1, 4, 3, 4, 5, 6, 5, 3, 5, 0, 3, 2, 6, 6, 3, 7, 5, 2, 8, 7, 7, 9, 2, 3, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2021

Keywords

Examples

			0.49531661869212336430296504041161047588717884176797451824647459341123774...
		

Crossrefs

Programs

  • Maple
    evalf(Pi * Integrate(log((1 + sqrt(1 + sin(x)^2))/2), x = 0..Pi/2), 120);
  • Mathematica
    RealDigits[N[Pi*Integrate[Log[(1 + Sqrt[1 + Sin[x]^2])/2], {x, 0, Pi/2}], 100]][[1]]
  • PARI
    Pi * intnum(x = 0, Pi/2, log((1 + sqrt(1 + sin(x)^2))/2))

Formula

Equals Pi * Integral_{x=0..Pi/2} log((1 + sqrt(1 + sin(x)^2))/2) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340165(n)) / (2*n^2) - log(2)).
Equals limit_{n->infinity} Pi^2 * (log(A340167(n)) / (4*n^2) - log(2)).

A340421 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2 + sin(y)^2) dy dx.

Original entry on oeis.org

1, 6, 2, 7, 0, 0, 8, 9, 9, 1, 0, 8, 5, 7, 2, 1, 3, 1, 5, 7, 6, 3, 7, 6, 6, 6, 7, 7, 0, 1, 7, 6, 0, 4, 4, 3, 7, 9, 8, 5, 7, 3, 4, 7, 1, 9, 0, 3, 5, 7, 9, 3, 0, 8, 2, 9, 1, 6, 2, 1, 2, 3, 5, 5, 3, 2, 3, 5, 2, 0, 7, 6, 9, 2, 7, 5, 4, 3, 0, 2, 8, 1, 2, 5, 3, 1, 8, 4, 0, 0, 3, 2, 8, 3, 2, 4, 3, 3, 8, 6, 9, 7, 1, 0, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2021

Keywords

Examples

			1.627008991085721315763766677017604437985734719035793082916212355323520769...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-Pi^2*(Log[2] + Log[Sqrt[2] - 1]/2) + Pi*Integrate[Log[1 + Sqrt[1 + 1/(1 + Sin[x]^2)]], {x, 0, Pi/2}], 120], 10, 110][[1]]

Formula

Equals -Pi^2*(log(2) + log(sqrt(2)-1)/2) + Pi * Integral_{x=0..Pi/2} log(1 + sqrt(1 + 1/(1 + sin(x)^2))) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340396(n))/n^2 - log(2)) / 4.

A067518 Number of spanning trees in n X n X 2 grid.

Original entry on oeis.org

1, 384, 49766400, 2200248344641536, 32699232783861202944000000, 161655300770215803222365206216704000000, 264237966861625003904099008804894577790426446838104064
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jun 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2*n^2 - 2)/n^2*Product[If[n1+n2+n3 > 0, 3 - Cos[Pi*n1/n] - Cos[Pi*n2/n] - Cos[Pi*n3/2], 1], {n1, 0, n-1}, {n2, 0, n-1}, {n3, 0, 1}];
    Table[a[n] // Round, {n, 1, 7}] (* Jean-François Alcover, Feb 18 2019 *)

Formula

a(n) = 2^(2*n^2-2) / n^2 * Product_{n1=0..n-1, n2=0..n-1, n3=0..1, n1+n2+n3>0} (3 - cos(Pi*n1/n) - cos(Pi*n2/n) - cos(Pi*n3/2)).
a(n) ~ c * d^n * 2^(n^2) * exp(4*n^2*(G/Pi + m/Pi^2)) / sqrt(n), where m = Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + 2*sin(x)^2 + 2*sin(y)^2) dy dx = A340422 = 2.5516988064039243609935616786056293143254369265492957275912213393835172..., d = (2*sqrt(2)-3)*(2+sqrt(3))*(sqrt(15)-4) = 0.08133113706589390743806107..., c = 5^(1/4) * Gamma(1/4) / (sqrt(3) * (2*Pi)^(3/4)) = 0.788729432659299631982768... and G is Catalan's constant A006752. Equivalently, m = Pi * Integral_{x=0..Pi/2} (log(1 + sqrt(1 + 2/(3 - 2*cos(x)^2))) + log((1 + 2*sin(x)^2)/4)/2) dx. - Vaclav Kotesovec, Jan 06 2021, updated Mar 17 2024

Extensions

More terms from André Pönitz (poenitz(AT)htwm.de), Jun 11 2003
Showing 1-4 of 4 results.