cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A340182 a(n) = Product_{1<=j,k,m<=n} (4*cos(j*Pi/(2*n+1))^2 + 4*cos(k*Pi/(2*n+1))^2 + 4*cos(m*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 3, 61731, 220157391087140625, 3109768877542258728107559478225309328087616
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/3^n)^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[4^(n^3) * Product[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2 + Cos[m*Pi/(2*n + 1)]^2, {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[2^(n^3) * Product[3 + Cos[2*j*Pi/(2*n + 1)] + Cos[2*k*Pi/(2*n + 1)] + Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* or *)
    Round[Table[Product[u = Sqrt[Cos[j*Pi/(2*n + 1)]^2 + Cos[k*Pi/(2*n + 1)]^2]; (((u + Sqrt[1 + u^2])^(2*n + 1) - (u - Sqrt[1 + u^2])^(2*n + 1))/(2*Sqrt[1 + u^2])), {j, 1, n}, {k, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*cos(j*Pi/(2*n+1))^2+4*cos(k*Pi/(2*n+1))^2+4*cos(m*Pi/(2*n+1))^2))))}

Formula

From Vaclav Kotesovec, Jan 04 2021: (Start)
a(n) ~ c * d^n * s^(n^2) * r^(n^3), where
r = exp(8*A340322/Pi^3) = exp((8/Pi^3) * Integral_{x=0..Pi/2, y=0..Pi/2, z=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2 + 4*cos(z)^2) dx dy dz) = 5.3302028892051674211345979966496595201084467305922855029660919024805225841...
s = 0.57208914727550556482486188829703578692890272003698306852389010626941042...
d = 0.91012013388841787275362130594290903074302493828277326742531159...
c = 1.057086458532774496412062406469810663638243576302292119... (End)

A340350 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2*sin(y)^2) dy dx.

Original entry on oeis.org

4, 9, 5, 3, 1, 6, 6, 1, 8, 6, 9, 2, 1, 2, 3, 3, 6, 4, 3, 0, 2, 9, 6, 5, 0, 4, 0, 4, 1, 1, 6, 1, 0, 4, 7, 5, 8, 8, 7, 1, 7, 8, 8, 4, 1, 7, 6, 7, 9, 7, 4, 5, 1, 8, 2, 4, 6, 4, 7, 4, 5, 9, 3, 4, 1, 1, 2, 3, 7, 7, 4, 0, 6, 1, 2, 4, 7, 1, 1, 3, 6, 1, 4, 3, 4, 5, 6, 5, 3, 5, 0, 3, 2, 6, 6, 3, 7, 5, 2, 8, 7, 7, 9, 2, 3, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2021

Keywords

Examples

			0.49531661869212336430296504041161047588717884176797451824647459341123774...
		

Crossrefs

Programs

  • Maple
    evalf(Pi * Integrate(log((1 + sqrt(1 + sin(x)^2))/2), x = 0..Pi/2), 120);
  • Mathematica
    RealDigits[N[Pi*Integrate[Log[(1 + Sqrt[1 + Sin[x]^2])/2], {x, 0, Pi/2}], 100]][[1]]
  • PARI
    Pi * intnum(x = 0, Pi/2, log((1 + sqrt(1 + sin(x)^2))/2))

Formula

Equals Pi * Integral_{x=0..Pi/2} log((1 + sqrt(1 + sin(x)^2))/2) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340165(n)) / (2*n^2) - log(2)).
Equals limit_{n->infinity} Pi^2 * (log(A340167(n)) / (4*n^2) - log(2)).

A071763 Number of spanning trees in n X n X n grid.

Original entry on oeis.org

1, 384, 8193540096000, 172685928902844729688524604506636288, 77746347057132811936046563068332100246216273086593103906734080000000000000
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jun 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(n^3 - 1)/n^3 Product[Piecewise[{{1, i == j == k == 0}}, 3 - Cos[Pi i/n] - Cos[Pi j/n] - Cos[Pi k/n]], {i, 0, n - 1}, {j, 0, n - 1}, {k, 0, n - 1}], {n, 12}] // Round

Formula

a(n) = 2^(n^3-1) / n^3 * Product_{n1=0..n-1 n2=0..n-1 n3=0..n-1} (3- cos(Pi*n1/n) - cos(Pi*n2/n) - cos(Pi*n3/n) ) where n1, n2, n3 are not all 0.
Limit_{n->infinity} a(n)^(1/n^3) = exp(8 * A340322 / Pi^3) = 5.330202889205167421134597996649659520108446730592285502966091902480522584119... - Vaclav Kotesovec, Jan 05 2021

A340421 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2 + sin(y)^2) dy dx.

Original entry on oeis.org

1, 6, 2, 7, 0, 0, 8, 9, 9, 1, 0, 8, 5, 7, 2, 1, 3, 1, 5, 7, 6, 3, 7, 6, 6, 6, 7, 7, 0, 1, 7, 6, 0, 4, 4, 3, 7, 9, 8, 5, 7, 3, 4, 7, 1, 9, 0, 3, 5, 7, 9, 3, 0, 8, 2, 9, 1, 6, 2, 1, 2, 3, 5, 5, 3, 2, 3, 5, 2, 0, 7, 6, 9, 2, 7, 5, 4, 3, 0, 2, 8, 1, 2, 5, 3, 1, 8, 4, 0, 0, 3, 2, 8, 3, 2, 4, 3, 3, 8, 6, 9, 7, 1, 0, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2021

Keywords

Examples

			1.627008991085721315763766677017604437985734719035793082916212355323520769...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-Pi^2*(Log[2] + Log[Sqrt[2] - 1]/2) + Pi*Integrate[Log[1 + Sqrt[1 + 1/(1 + Sin[x]^2)]], {x, 0, Pi/2}], 120], 10, 110][[1]]

Formula

Equals -Pi^2*(log(2) + log(sqrt(2)-1)/2) + Pi * Integral_{x=0..Pi/2} log(1 + sqrt(1 + 1/(1 + sin(x)^2))) dx.
Equals limit_{n->infinity} Pi^2 * (log(A340396(n))/n^2 - log(2)) / 4.

A340422 Decimal expansion of Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + 2*sin(x)^2 + 2*sin(y)^2) dy dx.

Original entry on oeis.org

2, 5, 5, 1, 6, 9, 8, 8, 0, 6, 4, 0, 3, 9, 2, 4, 3, 6, 0, 9, 9, 3, 5, 6, 1, 6, 7, 8, 6, 0, 5, 6, 2, 9, 3, 1, 4, 3, 2, 5, 4, 3, 6, 9, 2, 6, 5, 4, 9, 2, 9, 5, 7, 2, 7, 5, 9, 1, 2, 2, 1, 3, 3, 9, 3, 8, 3, 5, 1, 7, 2, 0, 1, 7, 5, 7, 6, 9, 2, 2, 8, 6, 3, 6, 4, 8, 1, 7, 0, 5, 3, 4, 6, 6, 6, 6, 1, 4, 2, 4, 5, 7, 0, 6, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 07 2021

Keywords

Examples

			2.551698806403924360993561678605629314325436926549295727591221339383517201757...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Pi*Integrate[(Log[1 + Sqrt[1 + 2/(3 - 2*Cos[x]^2)]] + Log[(1 + 2*Sin[x]^2)/4]/2), {x, 0, Pi/2}], 120], 10, 110][[1]]

Formula

Equals Pi * Integral_{x=0..Pi/2} (log(1 + sqrt(1 + 2/(3 - 2*cos(x)^2))) + log((1 + 2*sin(x)^2)/4)/2) dx.
Equals limit_{n->infinity} Pi^2 * log(A067518(n))/(4*n^2) - Pi^2*log(2)/4 - G*Pi, where G is Catalan's constant A006752.

A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2).

Original entry on oeis.org

1, 6, 1157625, 170875128460147163136, 448524809573174705684873233798538664686384705625
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/(n*3^(n-1)))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))}

Formula

a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x).
Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021

A340181 a(n) = Product_{1<=j,k,m<=n} (4*sin(j*Pi/(2*n+1))^2 + 4*sin(k*Pi/(2*n+1))^2 + 4*sin(m*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 9, 7486875, 14334918272193811385583, 1483160703050490588200236172057973908184332257091136
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/((2n + 1)*3^n))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^(n^3)* Product[3 - Cos[2*j*Pi/(2*n + 1)] - Cos[2*k*Pi/(2*n + 1)] - Cos[2*m*Pi/(2*n + 1)], {j, 1, n}, {k, 1, n}, {m, 1, n}], {n, 0, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n, prod(k=1, n, prod(m=1, n, 4*sin(j*Pi/(2*n+1))^2+4*sin(k*Pi/(2*n+1))^2+4*sin(m*Pi/(2*n+1))^2))))}

Formula

Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021
Showing 1-7 of 7 results.