A340437 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 4) missing three edges, where exactly two of the removed edges are incident to the same vertex in the 4-point set but none of the removed edges are incident to the same vertex in the other set.
3451, 64705, 1068475, 16734721, 256041211, 3875962945, 58387463995, 877549918081, 13175419936891, 197716513589185, 2966344254717115, 44499339824298241, 667519329831422971, 10012994576066466625, 150196351045142283835, 2252955292518089539201, 33794399575693844931451
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Mathematica
LinearRecurrence[{26,-196,486,-315},{3451,64705,1068475,16734721},20] (* Harvey P. Dale, Apr 03 2022 *)
Formula
a(n) = 343*15^(n-3) - 264*7^(n-3) + 52*3^(n-3) - 2.
G.f.: x^4*(3451 - 25021*x + 62541*x^2 - 40635*x^3)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4). - Stefano Spezia, Apr 10 2021
Comments