cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340455 G.f.: Sum_{n>=0} x^(2*n)/(1 - x^(5*n+2)) - x*Sum_{n>=0} x^(3*n)/(1 - x^(5*n+3)).

Original entry on oeis.org

1, -1, 2, 0, 0, 0, 2, -2, 2, 1, 0, 0, 1, -2, 2, 0, 2, 0, 2, -2, 0, 0, 0, 2, 2, -2, 2, 0, -1, 0, 4, -2, 2, -1, 0, 0, 0, 0, 2, 0, 2, 0, 2, -2, 2, 0, -2, 0, 2, -2, 2, 2, 0, 0, 2, -2, 2, 1, 2, -2, 0, -2, 2, 0, 1, 2, 2, -2, 0, 0, 0, 0, 2, -2, 4
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2021

Keywords

Comments

The g.f. of this sequence equals the numerator of George E. Andrews' expression for the cube of Ramanujan's continued fraction. See references given in A007325.

Examples

			G.f.: P(q) = 1 - q + 2*q^2 + 2*q^6 - 2*q^7 + 2*q^8 + q^9 + q^12 - 2*q^13 + 2*q^14 + 2*q^16 + 2*q^18 - 2*q^19 + 2*q^23 + 2*q^24 - 2*q^25 + 2*q^26 - q^28 + ...
Given the g.f. of this sequence,
P(q) = Sum_{n>=0} q^(2*n)/(1 - q^(5*n+2)) - q*Sum_{n>=0} q^(3*n)/(1 - q^(5*n+3))
and the g.f. of A340456,
Q(q) = Sum_{n>=0} q^n/(1 - q^(5*n+1)) - q^3*Sum_{n>=0} q^(4*n)/(1 - q^(5*n+4))
then
R(q)^3 = P(q)/Q(q) where
Q(q) = 1 + 2*q + 2*q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + q^7 + 2*q^8 + 2*q^9 + 2*q^10 + 2*q^12 + 4*q^13 + 2*q^14 + q^16 + ...
R(q)^3 = 1 - 3*q + 6*q^2 - 7*q^3 + 3*q^4 + 6*q^5 - 17*q^6 + 24*q^7 - 21*q^8 + 6*q^9 + 21*q^10 - 54*q^11 + 77*q^12 - 72*q^13 + 24*q^14 + 64*q^15 + ...;
here, R(q) is the expansion of Ramanujan's continued fraction (A007325).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = prod(m=0,n\5+1, (1-x^(5*m+5) +x*O(x^n))^2 * (1-x^(5*m+1))*(1-x^(5*m+4)) / ( (1-x^(5*m+2))^2*(1-x^(5*m+3))^2 +x*O(x^n) ) ));polcoeff(A,n)}
    for(n=0,100,print1(a(n),", "))
    
  • PARI
    {S(j,k,n) = sum(m=0,n, x^(j*m)/(1 - x^(5*m+k) +x*O(x^n)) ) }
    {a(n) = polcoeff( S(2,2,n) - x*S(3,3,n), n)}
    for(n=0,100,print1(a(n),", "))

Formula

G.f.: Product_{n>=0} (1 - x^(n+1)) * (1 - x^(5*n+5)) / ( (1 - x^(5*n+2))^3 * (1 - x^(5*n+3))^3 ).
G.f.: Product_{n>=0} (1 - x^(5*n+5))^2 * (1 - x^(5*n+1))*(1 - x^(5*n+4)) / ( (1 - x^(5*n+2))^2*(1 - x^(5*n+3))^2 ).
G.f.: [ Sum_{n>=0} x^n/(1 - x^(5*n+3)) - x * Sum_{n>=0} x^(4*n)/(1 - x^(5*n+2)) ] * R(x), where R(q) is the expansion of Ramanujan's continued fraction (A007325).