A340467 a(n) is the n-th squarefree number having n prime factors.
2, 10, 66, 462, 4290, 53130, 903210, 17687670, 406816410, 11125544430, 338431883790, 11833068917670, 457077357006270, 20384767656323070, 955041577211912190, 49230430891074322890, 2740956243836856315270, 168909608387276001835590, 11054926927790884163355330
Offset: 1
Keywords
Examples
a(1) = A000040(1) = 2. a(2) = A006881(2) = 10. a(3) = A007304(3) = 66. a(4) = A046386(4) = 462. a(5) = A046387(5) = 4290. a(6) = A067885(6) = 53130. a(7) = A123321(7) = 903210. a(8) = A123322(8) = 17687670. a(9) = A115343(9) = 406816410. a(10) = A281222(10) = 11125544430.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..350
Crossrefs
Programs
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A340467(n): if n == 1: return 2 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Comments