A341533
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 256, 722, 2916, ...
2, 200, 224, 2916, 9922, 80000, ...
2, 1156, 1058, 38416, 155682, 2775556, ...
2, 6728, 5054, 527076, 2540032, 105125000, ...
2, 39204, 24200, 7311616, 41934482, 4115479104, ...
-
default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));
A340560
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
1, 8, 49, 288, 1681, ...
1, 49, 1296, 30625, 707281, ...
1, 288, 30625, 2654208, 219069601, ...
1, 1681, 707281, 219069601, 62500000000, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}
A340476
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 4, 19, 91, 436, ...
1, 11, 176, 2911, 48301, ...
1, 29, 1471, 79808, 4375897, ...
1, 76, 11989, 2091817, 372713728, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
-
{T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}
Showing 1-3 of 3 results.