cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341533 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin((2*b-1)*Pi/k)^2) ).

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 256, 224, 1156, 2, 200, 722, 2916, 1058, 6728, 2, 478, 2916, 9922, 38416, 5054, 39204, 2, 1156, 10082, 80000, 155682, 527076, 24200, 228488, 2, 2786, 38416, 401998, 2775556, 2540032, 7311616, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     256,      722,       2916, ...
  2,   200,   224,    2916,     9922,      80000, ...
  2,  1156,  1058,   38416,   155682,    2775556, ...
  2,  6728,  5054,  527076,  2540032,  105125000, ...
  2, 39204, 24200, 7311616, 41934482, 4115479104, ...
		

Crossrefs

Main diagonal gives A341535.
Cf. A340475.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin((2*b-1)*Pi/k)^2))));

A340560 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Examples

			Square array begins:
  1,    1,      1,         1,           1, ...
  1,    8,     49,       288,        1681, ...
  1,   49,   1296,     30625,      707281, ...
  1,  288,  30625,   2654208,   219069601, ...
  1, 1681, 707281, 219069601, 62500000000, ...
		

Crossrefs

Rows and columns 1..2 give A000012, A001108.
Main diagonal gives A340562.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}

Formula

T(n,k) = T(k,n).
T(n,k) = A212796(n,k)/(n*k).

A340476 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,  1,     1,       1,         1, ...
  1,  4,    19,      91,       436, ...
  1, 11,   176,    2911,     48301, ...
  1, 29,  1471,   79808,   4375897, ...
  1, 76, 11989, 2091817, 372713728, ...
		

Crossrefs

Column k=0..1 give A000012, A002878.
Main diagonal gives A127606.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
    
  • PARI
    {T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}

Formula

T(n,k) = 2^k * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*k}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).
Showing 1-3 of 3 results.