cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A230033 Number of perfect matchings in the graph C_7 X C_{2n}.

Original entry on oeis.org

10082, 401998, 19681538, 1034315998, 55820091938, 3044533460992, 166779871224962, 9152970837103102, 502711247500143362, 27619744381029252622, 1517688682641434229698, 83401213534557960429502, 4583249488240161816039552, 251871805990373105011941118, 13841645914590329223808310018, 760670944425011837491619633038
Offset: 2

Views

Author

Sergey Perepechko, Dec 20 2013

Keywords

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 7, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/7)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

G.f.: 2*x^2*(5041 -499700*x +20440353*x^2 -466963360*x^3 +6751799885*x^4 -66182756655*x^5 +459438362278*x^6 -2327864968019*x^7 +8797357131438*x^8 -25192378831195*x^9 +55291405473782*x^10 -93750343061691*x^11 +123440474579985*x^12 -126568817064424*x^13 +101127542456783*x^14 -62874205910076*x^15 +30308779015615*x^16 -11259345843608*x^17 +3194422598067*x^18 -683503915153*x^19 +108424368962*x^20 -12458825709*x^21 +1004282914*x^22 -54198917*x^23 +1818498*x^24 -33157*x^25 +239*x^26)/((1 -x)*(1 -13*x +57*x^2 -97*x^3 +57*x^4 -13*x^5 +x^6)*(1 -71*x +952*x^2 -3976*x^3 +6384*x^4 -3976*x^5 +952*x^6 -71*x^7 +x^8)*(1 -54*x +1039*x^2 -9096*x^3 +39037*x^4 -90378*x^5 +118951*x^6 -90378*x^7 +39037*x^8 -9096*x^9 +1039*x^10 -54*x^11 +x^12)).
a(n) = sqrt( Product_{j=1..n} Product_{k=1..7} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/7)^2) ). - Seiichi Manyama, Feb 14 2021

A341741 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.

Original entry on oeis.org

2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Comments

Dimer tilings of 2n x k toroidal grid.

Examples

			Square array begins:
  2,     8,    14,      36,       82,        200, ...
  2,    36,    50,     272,      722,       3108, ...
  2,   200,   224,    3108,     9922,      90176, ...
  2,  1156,  1058,   39952,   155682,    3113860, ...
  2,  6728,  5054,  537636,  2540032,  114557000, ...
  2, 39204, 24200, 7379216, 41934482, 4357599552, ...
		

Crossrefs

Columns 1..12 give A007395, A162484(2*n), A231087, A220864(2*n), A231485, A232804(2*n), A230033, A253678(2*n), A281583, A281679(2*n), A308761, A309018(2*n).
T(n,2*n) gives A335586.

Formula

T(n,k) = A341533(n,k)/2 + A341738(n,k) + 2 * ((k+1) mod 2) * A341739(n,ceiling(k/2)).
T(n, 2k) = T(k, 2n).
If k is odd, T(n,k) = A341533(n,k) = 2*A341738(n,k).

Extensions

New name from Andrey Zabolotskiy, Dec 26 2021

A281583 Number of perfect matchings in the graph C_9 X C_{2n}.

Original entry on oeis.org

140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2

Views

Author

Sergey Perepechko, Jan 25 2017

Keywords

Comments

For odd values of m the order of recurrence relation for the number of perfect matchings in C_{m} X C_{2n} graph does not exceed 3^floor(m/2).

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

a(n) = sqrt( Product_{j=1..n} Product_{k=1..9} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/9)^2) ). - Seiichi Manyama, Feb 14 2021

A308761 Number of perfect matchings in the graph C_{11} X C_{2n}.

Original entry on oeis.org

1956242, 643041038, 294554220578, 152849502772958, 83804387156528018, 47217865780262297342, 26990513247252188990402, 15550772782091243971206638, 8999393061535308152171682002, 5221063878050546380074377019392
Offset: 2

Views

Author

Sergey Perepechko, Jul 04 2019

Keywords

Comments

This sequence satisfies a recurrence relation of order 243.

Crossrefs

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 11, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/11)^2)))); \\ Seiichi Manyama, Feb 14 2021

Formula

a(n) = sqrt( Product_{j=1..n} Product_{k=1..11} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/11)^2) ). - Seiichi Manyama, Feb 14 2021

A341535 a(n) = sqrt(Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/n)^2)).

Original entry on oeis.org

1, 2, 36, 224, 38416, 2540032, 4115479104, 3044533460992, 48656376372265216, 387018647188487143424, 62441634466575620320306176, 5221063878050546380074377019392, 8590392749565593082105293619707908096, 7476351474500749779460880888573410601336832
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Crossrefs

Main diagonal of A341533.

Programs

  • Mathematica
    Table[Sqrt[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/n]^2, {k, 1, n}, {j, 1, n}]], {n, 0, 20}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/n)^2))));

Formula

a(n) ~ 2^(1/4)*(1 + sqrt(2)*(1 + (-1)^n)/2) * exp(2*G*n^2/Pi), where G is Catalan's constant A006752. - Vaclav Kotesovec, Feb 14 2021
If n is odd, a(n) = 2*A341478(n). - Seiichi Manyama, Feb 19 2021

A341738 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).

Original entry on oeis.org

1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
  1, 2,     7,    16,       41,        98, ...
  1, 2,    25,    72,      361,      1250, ...
  1, 2,   112,   400,     4961,     25088, ...
  1, 2,   529,  2312,    77841,    559682, ...
  1, 2,  2527, 13456,  1270016,  12771458, ...
  1, 2, 12100, 78408, 20967241, 292820000, ...
		

Crossrefs

Main diagonal gives A341782.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));

Formula

If k is odd, T(n,k) = A341533(n,k)/2.

A341739 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).

Original entry on oeis.org

1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1

Views

Author

Seiichi Manyama, Feb 18 2021

Keywords

Examples

			Square array begins:
     1,      1,        1,          1,             1, ...
     8,     36,      200,       1156,          6728, ...
    49,    625,    12544,     279841,       6385729, ...
   288,   9216,   583200,   44408896,    3546167328, ...
  1681, 130321, 24611521, 6059221281, 1612940640256, ...
		

Crossrefs

Main diagonal gives A341478(n)^2.

Programs

  • PARI
    default(realprecision, 120);
    T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));

A341543 a(n) = sqrt( Product_{j=1..n} Product_{k=1..2} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/2)^2) ).

Original entry on oeis.org

8, 36, 200, 1156, 6728, 39204, 228488, 1331716, 7761800, 45239076, 263672648, 1536796804, 8957108168, 52205852196, 304278005000, 1773462177796, 10336495061768, 60245508192804, 351136554095048, 2046573816377476, 11928306344169800
Offset: 1

Views

Author

Seiichi Manyama, Feb 14 2021

Keywords

Crossrefs

Column k=2 of A341533.
Cf. A001541.

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 2, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/2)^2))));

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = 6*a(n-1) - a(n-2) - 8.
a(n) = 2*(A001541(n) + 1). - Hugo Pfoertner, Feb 14 2021
G.f.: 4*x*(2 - 5*x + x^2)/((1 - x)*(1 - 6*x + x^2)). - Vaclav Kotesovec, Feb 14 2021

A341544 a(n) = sqrt( Product_{j=1..n} Product_{k=1..4} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/4)^2) ).

Original entry on oeis.org

36, 256, 2916, 38416, 527076, 7311616, 101727396, 1416468496, 19727326116, 274760478976, 3826898412516, 53301739046416, 742397156205156, 10340257357947136, 144021201787572516, 2005956552488017936, 27939370476391960356, 389145229905568604416, 5420093847412497929316
Offset: 1

Views

Author

Seiichi Manyama, Feb 14 2021

Keywords

Crossrefs

Column k=4 of A341533.

Programs

  • Mathematica
    Table[6 + 4 (2 + Sqrt[3])^n + 4 (2 - Sqrt[3])^n + (7 + 4 Sqrt[3])^n + (7 - 4 Sqrt[3])^n, {n, 1, 20}] // FullSimplify (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 4, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/4)^2))));

Formula

a(n) = 19*a(n-1) - 76*a(n-2) + 76*a(n-3) - 19*a(n-4) + a(n-5).
a(n) = 18*a(n-1) - 58*a(n-2) + 18*a(n-3) - a(n-4) + 144.
From Vaclav Kotesovec, Feb 14 2021: (Start)
G.f.: 4*(4 - 67*x + 197*x^2 - 107*x^3 + 9*x^4) / ((1 - x)*(1 - 14*x + x^2)*(1 - 4*x + x^2)).
a(n) = 6 + 4*(2 + sqrt(3))^n + 4*(2 - sqrt(3))^n + (7 + 4*sqrt(3))^n + (7 - 4*sqrt(3))^n. (End)

A341545 a(n) = sqrt( Product_{j=1..n} Product_{k=1..6} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/6)^2) ).

Original entry on oeis.org

200, 2916, 80000, 2775556, 105125000, 4115479104, 163146144200, 6498349262596, 259309319120000, 10354620147583716, 413585320648104200, 16521137110112348224, 659981119616472888200, 26365103950427540487396, 1053246219256801250000000
Offset: 1

Views

Author

Seiichi Manyama, Feb 14 2021

Keywords

Crossrefs

Column k=6 of A341533.

Programs

  • PARI
    default(realprecision, 120);
    a(n) = round(sqrt(prod(j=1, n, prod(k=1, 6, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/6)^2))));

Formula

a(n) = 77*a(n-1) - 2002*a(n-2) + 24596*a(n-3) - 165165*a(n-4) + 653835*a(n-5) - 1598883*a(n-6) + 2483481*a(n-7) - 2483481*a(n-8) + 1598883*a(n-9) - 653835*a(n-10) + 165165*a(n-11) - 24596*a(n-12) + 2002*a(n-13) - 77*a(n-14) + a(n-15).
a(n) = 76*a(n-1) - 1926*a(n-2) + 22670*a(n-3) - 142495*a(n-4) + 511340*a(n-5) - 1087543*a(n-6) + 1395938*a(n-7) - 1087543*a(n-8) + 511340*a(n-9) - 142495*a(n-10) + 22670*a(n-11) - 1926*a(n-12) + 76*a(n-13) - a(n-14) - 2160.
G.f.: 4*(50*x - 3121*x^2 + 63967*x^3 - 616453*x^4 + 3219563*x^5 - 9827161*x^6 + 18330389*x^7 - 21405307*x^8 + 15754967*x^9 - 7241797*x^10 + 2026187*x^11 - 329569*x^12 + 28911*x^13 - 1182*x^14 + 16*x^15) / ((1 - x)*(1 - 7*x + x^2)*(1 - 6*x + x^2)*(1 - 3*x + x^2)* (1 - 42*x + 83*x^2 - 42*x^3 + x^4)*(1 - 18*x + 43*x^2 - 18*x^3 + x^4)). - Vaclav Kotesovec, Feb 14 2021
Showing 1-10 of 10 results.