A230033
Number of perfect matchings in the graph C_7 X C_{2n}.
Original entry on oeis.org
10082, 401998, 19681538, 1034315998, 55820091938, 3044533460992, 166779871224962, 9152970837103102, 502711247500143362, 27619744381029252622, 1517688682641434229698, 83401213534557960429502, 4583249488240161816039552, 251871805990373105011941118, 13841645914590329223808310018, 760670944425011837491619633038
Offset: 2
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 7, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/7)^2)))); \\ Seiichi Manyama, Feb 14 2021
A341741
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards: number of perfect matchings in the graph C_{2n} x C_k.
Original entry on oeis.org
2, 8, 2, 14, 36, 2, 36, 50, 200, 2, 82, 272, 224, 1156, 2, 200, 722, 3108, 1058, 6728, 2, 478, 3108, 9922, 39952, 5054, 39204, 2, 1156, 10082, 90176, 155682, 537636, 24200, 228488, 2, 2786, 39952, 401998, 3113860, 2540032, 7379216, 115934, 1331716, 2
Offset: 1
Square array begins:
2, 8, 14, 36, 82, 200, ...
2, 36, 50, 272, 722, 3108, ...
2, 200, 224, 3108, 9922, 90176, ...
2, 1156, 1058, 39952, 155682, 3113860, ...
2, 6728, 5054, 537636, 2540032, 114557000, ...
2, 39204, 24200, 7379216, 41934482, 4357599552, ...
Columns 1..12 give
A007395,
A162484(2*n),
A231087,
A220864(2*n),
A231485,
A232804(2*n),
A230033,
A253678(2*n),
A281583,
A281679(2*n),
A308761,
A309018(2*n).
A281583
Number of perfect matchings in the graph C_9 X C_{2n}.
Original entry on oeis.org
140450, 16091936, 2415542018, 400448833106, 69206906601800, 12190695635108354, 2167175327735637122, 387018647188487143424, 69272289588070930561250, 12413316310203106546620386, 2225719417041514241075539592, 399192630631160441128470998546
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..443
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V.16, No.4, pp.333-361.
- Sergey Perepechko, Generating function, in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 9, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/9)^2)))); \\ Seiichi Manyama, Feb 14 2021
A308761
Number of perfect matchings in the graph C_{11} X C_{2n}.
Original entry on oeis.org
1956242, 643041038, 294554220578, 152849502772958, 83804387156528018, 47217865780262297342, 26990513247252188990402, 15550772782091243971206638, 8999393061535308152171682002, 5221063878050546380074377019392
Offset: 2
- Seiichi Manyama, Table of n, a(n) for n = 2..361
- S. N. Perepechko, The number of perfect matchings on C_m X C_n graphs, (in Russian), Information Processes, 2016, V. 16, No. 4, pp. 333-361.
- S. N. Perepechko, Counting Near-Perfect Matchings on C_m × C_n Tori of Odd Order in the Maple System, Programming and Computer Software, 45(2019), 65-72.
- Sergey Perepechko, Generating function in Maple notation.
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 11, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/11)^2)))); \\ Seiichi Manyama, Feb 14 2021
A341535
a(n) = sqrt(Product_{1<=j,k<=n} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/n)^2)).
Original entry on oeis.org
1, 2, 36, 224, 38416, 2540032, 4115479104, 3044533460992, 48656376372265216, 387018647188487143424, 62441634466575620320306176, 5221063878050546380074377019392, 8590392749565593082105293619707908096, 7476351474500749779460880888573410601336832
Offset: 0
-
Table[Sqrt[Product[4*Sin[(2*j - 1)*Pi/(2*n)]^2 + 4*Sin[(2*k - 1)*Pi/n]^2, {k, 1, n}, {j, 1, n}]], {n, 0, 20}] // Round (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, n, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/n)^2))));
A341738
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n} Product_{b=1..k-1} (4*sin((2*a-1)*Pi/(2*n))^2 + 4*sin(2*b*Pi/k)^2) ).
Original entry on oeis.org
1, 2, 1, 7, 2, 1, 16, 25, 2, 1, 41, 72, 112, 2, 1, 98, 361, 400, 529, 2, 1, 239, 1250, 4961, 2312, 2527, 2, 1, 576, 5041, 25088, 77841, 13456, 12100, 2, 1, 1393, 18432, 200999, 559682, 1270016, 78408, 57967, 2, 1
Offset: 1
Square array begins:
1, 2, 7, 16, 41, 98, ...
1, 2, 25, 72, 361, 1250, ...
1, 2, 112, 400, 4961, 25088, ...
1, 2, 529, 2312, 77841, 559682, ...
1, 2, 2527, 13456, 1270016, 12771458, ...
1, 2, 12100, 78408, 20967241, 292820000, ...
-
default(realprecision, 120);
T(n, k) = round(sqrt(prod(a=1, n, prod(b=1, k-1, 4*sin((2*a-1)*Pi/(2*n))^2+4*sin(2*b*Pi/k)^2))));
A341739
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k} (4*sin(a*Pi/n)^2 + 4*sin((2*b-1)*Pi/(2*k))^2).
Original entry on oeis.org
1, 1, 8, 1, 36, 49, 1, 200, 625, 288, 1, 1156, 12544, 9216, 1681, 1, 6728, 279841, 583200, 130321, 9800, 1, 39204, 6385729, 44408896, 24611521, 1822500, 57121, 1, 228488, 146410000, 3546167328, 6059221281, 1003520000, 25411681, 332928
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
8, 36, 200, 1156, 6728, ...
49, 625, 12544, 279841, 6385729, ...
288, 9216, 583200, 44408896, 3546167328, ...
1681, 130321, 24611521, 6059221281, 1612940640256, ...
-
default(realprecision, 120);
T(n, k) = round(prod(a=1, n-1, prod(b=1, k, 4*sin(a*Pi/n)^2+4*sin((2*b-1)*Pi/(2*k))^2)));
A341543
a(n) = sqrt( Product_{j=1..n} Product_{k=1..2} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/2)^2) ).
Original entry on oeis.org
8, 36, 200, 1156, 6728, 39204, 228488, 1331716, 7761800, 45239076, 263672648, 1536796804, 8957108168, 52205852196, 304278005000, 1773462177796, 10336495061768, 60245508192804, 351136554095048, 2046573816377476, 11928306344169800
Offset: 1
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 2, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/2)^2))));
A341544
a(n) = sqrt( Product_{j=1..n} Product_{k=1..4} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/4)^2) ).
Original entry on oeis.org
36, 256, 2916, 38416, 527076, 7311616, 101727396, 1416468496, 19727326116, 274760478976, 3826898412516, 53301739046416, 742397156205156, 10340257357947136, 144021201787572516, 2005956552488017936, 27939370476391960356, 389145229905568604416, 5420093847412497929316
Offset: 1
-
Table[6 + 4 (2 + Sqrt[3])^n + 4 (2 - Sqrt[3])^n + (7 + 4 Sqrt[3])^n + (7 - 4 Sqrt[3])^n, {n, 1, 20}] // FullSimplify (* Vaclav Kotesovec, Feb 14 2021 *)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 4, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/4)^2))));
A341545
a(n) = sqrt( Product_{j=1..n} Product_{k=1..6} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/6)^2) ).
Original entry on oeis.org
200, 2916, 80000, 2775556, 105125000, 4115479104, 163146144200, 6498349262596, 259309319120000, 10354620147583716, 413585320648104200, 16521137110112348224, 659981119616472888200, 26365103950427540487396, 1053246219256801250000000
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (77, -2002, 24596, -165165, 653835, -1598883, 2483481, -2483481, 1598883, -653835, 165165, -24596, 2002, -77, 1)
-
default(realprecision, 120);
a(n) = round(sqrt(prod(j=1, n, prod(k=1, 6, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/6)^2))));
Showing 1-10 of 10 results.
Comments