A340482 Numbers that are the product of two not necessarily distinct odd primes p*q with the property that (p*q+1)/2 and (p+q)/2 are primes.
9, 21, 25, 33, 57, 85, 93, 121, 133, 145, 177, 205, 213, 217, 253, 361, 393, 445, 553, 565, 633, 697, 793, 817, 841, 865, 913, 933, 973, 1137, 1285, 1345, 1417, 1437, 1465, 1477, 1513, 1537, 1717, 1765, 1837, 1857, 1893, 2101, 2173, 2245, 2305, 2517, 2577, 2581, 2605, 2641, 2653
Offset: 1
Keywords
Examples
a(1) = 9 = 3*3 is the first number for which SRS(a(1)) consists of three regions ( 5, 3, 5 ). a(6) = 85 = 5*17, both (1+85)/2 = 43 and (5+17)/2 = 11 are primes, and SRS(a(6)) consists of the 4 regions ( 43, 11, 11, 43 ).
Crossrefs
Programs
-
Mathematica
dQ[s_] := Module[{d=Divisors[s]}, AllTrue[Map[(d[[#]]+d[[-#]])/2&, Range[Length[d]/2]], PrimeQ]] a340482[n_] := Select[Range[n], PrimeOmega[#]==2&&dQ[#]&] a340482[2700]
-
PARI
isok(m) = if ((m % 2) && (bigomega(m)==2), if (issquare(m), isprime((m+1)/2), my(p=factor(m)[1,1], q=factor(m)[2,1]); isprime((p*q+1)/2) && isprime((p+q)/2))); \\ Michel Marcus, Jan 10 2021
Comments