cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340485 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1)^2.

Original entry on oeis.org

1, 0, 7, 3, 2, 5, 3, 7, 1, 6, 4, 2, 0, 3, 0, 2, 3, 9, 6, 9, 5, 0, 6, 0, 2, 4, 8, 5, 0, 2, 1, 8, 2, 8, 8, 0, 3, 2, 4, 7, 2, 7, 9, 8, 9, 8, 2, 0, 4, 3, 6, 1, 5, 7, 4, 8, 7, 9, 3, 3, 8, 9, 2, 4, 6, 9, 8, 2, 7, 9, 9, 0, 2, 0, 8, 7, 4, 8, 6, 9, 4, 5, 1, 6, 8, 5, 3, 4, 3, 9, 9, 1, 9, 9, 3, 2, 6, 1, 2, 5, 3, 9, 7, 1, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2021

Keywords

Examples

			0.10732537164203023969506024850218288032472798982043615...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta'(4) - Sum(i * Zeta'(2*i+2), i = 2 .. infinity), 120); # Amiram Eldar, Mar 09 2024
  • PARI
    sumpos(k=2, log(k)/(k^2-1)^2) \\ Michel Marcus, Jan 09 2021
    
  • PARI
    -zeta'(4) - sumpos(i=2, i*zeta'(2*i+2)) \\ Amiram Eldar, Mar 09 2024

Formula

Equals -Sum_{i>=1} i*zeta'(2*i+2) = A261506 - Sum_{i>=2} i*zeta'(2*i+2).

Extensions

More terms from Amiram Eldar, Mar 09 2024