cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340440 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1).

Original entry on oeis.org

1, 0, 2, 3, 1, 3, 8, 7, 2, 6, 4, 2, 7, 9, 3, 9, 2, 9, 5, 5, 3, 5, 0, 8, 8, 0, 7, 6, 9, 7, 5, 2, 1, 8, 0, 9, 7, 4, 9, 2, 1, 4, 5, 2, 7, 9, 3, 6, 6, 0, 8, 3, 2, 5, 9, 3, 6, 6, 3, 4, 8, 6, 1, 7, 9, 1, 2, 1, 6, 5, 3, 1, 9, 2, 2, 8, 5, 2, 3, 2, 7, 8, 9, 2, 2, 7, 5, 3, 1, 9, 7, 2, 4, 1, 2, 1, 7, 0, 8, 7, 5, 0, 1, 0, 7
Offset: 1

Views

Author

R. J. Mathar, Jan 07 2021

Keywords

Examples

			1.0231387264279392955...
		

Crossrefs

Programs

Formula

Equals Sum_{i>=1} -zeta'(2i) = A073002 + A261506 - Sum_{i>=3} zeta'(2i).
Sum_{k>=2} log(k)/(k^2-s) = -Sum_{i>=1} s^(i-1)*zeta'(2i) for |s|<4. - R. J. Mathar, May 03 2021
Equals log(2)/2 + Sum_{k>=1} (zeta(2*k)-1)/(2*k-1). - Amiram Eldar, Jun 08 2021

A340484 Decimal expansion of Sum_{k>=2} (log k)^2/(k^2-1).

Original entry on oeis.org

2, 0, 6, 7, 0, 2, 8, 7, 5, 1, 8, 3, 8, 6, 5, 0, 6, 7, 1, 4, 2, 0, 1, 8, 4, 7, 8, 2, 7, 0, 5, 3, 8, 1, 9, 3, 0, 2, 7, 7, 3, 4, 2, 7, 5, 2, 5, 8, 7, 3, 3, 6, 9, 7, 0, 4, 3, 4, 2, 1, 7, 8, 8, 4, 1, 9, 5, 9, 9, 7, 9, 7, 9, 5, 6, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 09 2021

Keywords

Examples

			2.0670287518386506714201847827053819302773427525873369704342178841959...
		

Crossrefs

Programs

  • PARI
    sumpos(k=2, log(k)^2/(k^2-1)) \\ Michel Marcus, Jan 09 2021

Formula

Equals Sum_{i>=1} Zeta''(2*i) = A201994 + A340443 + Sum_{i>=3} Zeta''(2*i).

A343918 Decimal expansion of Sum_{k>=2} k*log(k)/(k^2-1)^2 .

Original entry on oeis.org

2, 8, 1, 4, 8, 2, 7, 9, 3, 1, 4, 6, 6, 4, 1, 6, 0, 8, 2, 8, 5, 6, 9, 8, 7, 2, 0, 1, 1, 7, 6, 2, 9, 6, 6, 1, 6, 5, 2, 0, 3, 1, 2, 6, 2, 4, 0, 5, 7, 3, 1, 1, 7, 7, 9, 6, 4, 8, 2, 5, 1, 7, 8, 1, 6, 0, 5, 8, 8, 7, 6, 6, 0, 5, 8, 9, 2, 1, 2, 2, 5, 0, 4, 7, 5, 6, 6
Offset: 0

Views

Author

R. J. Mathar, May 04 2021

Keywords

Examples

			0.281482...
		

Crossrefs

Cf. A340485.

Programs

  • PARI
    sumpos(k=2, k*log(k)/(k^2-1)^2 ) \\ Michel Marcus, May 04 2021

Formula

Equals -Sum_{i>=1} i*Zeta'(2*i+1), weighted sum over first derivatives of Riemann-Zeta.
Showing 1-3 of 3 results.