cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A244109 Decimal expansion of a partial sum limiting constant related to the Lüroth representation of real numbers.

Original entry on oeis.org

2, 0, 4, 6, 2, 7, 7, 4, 5, 2, 8, 5, 5, 8, 7, 8, 5, 9, 1, 0, 7, 0, 1, 7, 6, 1, 5, 3, 9, 5, 0, 4, 3, 6, 1, 9, 4, 9, 8, 4, 2, 9, 0, 5, 5, 8, 7, 3, 2, 1, 6, 6, 5, 1, 8, 7, 3, 2, 6, 9, 7, 2, 3, 5, 8, 2, 4, 3, 3, 0, 6, 3, 8, 4, 5, 7, 0, 4, 6, 5, 5, 7, 8, 4, 5, 5, 0, 6, 3, 9, 4, 4, 8, 2, 4, 3, 4, 1, 7, 5, 0, 0, 2, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 20 2014

Keywords

Examples

			2.04627745285587859107017615395043619498429055873216651873269723582433...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Cf. A002210, A085361. Equals twice A340440.

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta(); (&+[((1-(-1)^n)*Evaluate(L,n+1)-1)/n: n in [1..1000]]); // G. C. Greubel, Nov 15 2018
    
  • Maple
    evalf(Sum(((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n, n=1..infinity), 120); # Vaclav Kotesovec, Dec 11 2015
  • Mathematica
    NSum[Log[k*(k+1)]/(k*(k+1)), {k, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 5000, Method -> {NIntegrate, MaxRecursion -> 100}] (* Vaclav Kotesovec, Dec 11 2015 *)
    digits = 120; RealDigits[NSum[((1-(-1)^n)*Zeta[n+1] -1)/n, {n, 1, Infinity}, NSumTerms -> 20*digits, WorkingPrecision -> 10*digits, Method -> "AlternatingSigns"], 10, digits][[1]] (* G. C. Greubel, Nov 15 2018 *)
  • PARI
    default(realprecision, 1000); s = sumalt(n=1, ((1 + (-1)^(n+1))*zeta(n+1) - 1)/n); default(realprecision, 100); print(s) \\ Vaclav Kotesovec, Dec 11 2015
    
  • PARI
    2*suminf(k=1, -zeta'(2*k)) \\ Vaclav Kotesovec, Jun 17 2021
    
  • Sage
    numerical_approx(sum(((1-(-1)^k)*zeta(k+1)-1)/k for k in [1..1000]), digits=120) # G. C. Greubel, Nov 15 2018

Formula

Equals Sum_{k>=1} log(k*(k+1))/(k*(k+1)).
Equals A085361 + A131688. - Vaclav Kotesovec, Dec 11 2015
Equals Sum_{n >=1} ((1 + (-1)^(n+1))*zeta(n + 1) - 1)/n. - G. C. Greubel, Nov 15 2018
Equals 2*Sum_{k>=2} log(k)/(k^2-1) = 2*A340440. - Gleb Koloskov, May 02 2021
Equals -2*Sum_{k>=1} zeta'(2*k). - Vaclav Kotesovec, Jun 17 2021

Extensions

Corrected by Vaclav Kotesovec, Dec 11 2015

A340485 Decimal expansion of Sum_{k>=2} log(k)/(k^2-1)^2.

Original entry on oeis.org

1, 0, 7, 3, 2, 5, 3, 7, 1, 6, 4, 2, 0, 3, 0, 2, 3, 9, 6, 9, 5, 0, 6, 0, 2, 4, 8, 5, 0, 2, 1, 8, 2, 8, 8, 0, 3, 2, 4, 7, 2, 7, 9, 8, 9, 8, 2, 0, 4, 3, 6, 1, 5, 7, 4, 8, 7, 9, 3, 3, 8, 9, 2, 4, 6, 9, 8, 2, 7, 9, 9, 0, 2, 0, 8, 7, 4, 8, 6, 9, 4, 5, 1, 6, 8, 5, 3, 4, 3, 9, 9, 1, 9, 9, 3, 2, 6, 1, 2, 5, 3, 9, 7, 1, 0, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2021

Keywords

Examples

			0.10732537164203023969506024850218288032472798982043615...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta'(4) - Sum(i * Zeta'(2*i+2), i = 2 .. infinity), 120); # Amiram Eldar, Mar 09 2024
  • PARI
    sumpos(k=2, log(k)/(k^2-1)^2) \\ Michel Marcus, Jan 09 2021
    
  • PARI
    -zeta'(4) - sumpos(i=2, i*zeta'(2*i+2)) \\ Amiram Eldar, Mar 09 2024

Formula

Equals -Sum_{i>=1} i*zeta'(2*i+2) = A261506 - Sum_{i>=2} i*zeta'(2*i+2).

Extensions

More terms from Amiram Eldar, Mar 09 2024

A340484 Decimal expansion of Sum_{k>=2} (log k)^2/(k^2-1).

Original entry on oeis.org

2, 0, 6, 7, 0, 2, 8, 7, 5, 1, 8, 3, 8, 6, 5, 0, 6, 7, 1, 4, 2, 0, 1, 8, 4, 7, 8, 2, 7, 0, 5, 3, 8, 1, 9, 3, 0, 2, 7, 7, 3, 4, 2, 7, 5, 2, 5, 8, 7, 3, 3, 6, 9, 7, 0, 4, 3, 4, 2, 1, 7, 8, 8, 4, 1, 9, 5, 9, 9, 7, 9, 7, 9, 5, 6, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 09 2021

Keywords

Examples

			2.0670287518386506714201847827053819302773427525873369704342178841959...
		

Crossrefs

Programs

  • PARI
    sumpos(k=2, log(k)^2/(k^2-1)) \\ Michel Marcus, Jan 09 2021

Formula

Equals Sum_{i>=1} Zeta''(2*i) = A201994 + A340443 + Sum_{i>=3} Zeta''(2*i).

A343920 Decimal expansion of Sum_{k=4,6,8,...even} log(k)/(k^2-4) .

Original entry on oeis.org

3, 8, 5, 7, 4, 9, 7, 7, 7, 9, 6, 1, 9, 7, 4, 5, 6, 9, 3, 9, 9, 5, 0, 3, 0, 4, 2, 0, 1, 7, 2, 1, 2, 6, 3, 0, 8, 8, 7, 1, 9, 2, 5, 9, 5, 0, 3, 4, 0, 6, 8, 6, 7, 4, 9, 8, 9, 2, 1, 4, 6, 5, 6, 2, 5, 8, 0, 5, 2, 6, 3
Offset: 0

Views

Author

R. J. Mathar, May 04 2021

Keywords

Examples

			0.385749...
		

Crossrefs

Cf. A340440.

Programs

  • PARI
    sumpos(k=2, log(2*k)/(4*k^2-4)) \\ Michel Marcus, May 04 2021

Formula

Equals 3*log(2)/16 + A340440 / 4 = (3*A002162/4 + A340440)/4.
Showing 1-4 of 4 results.