A340506 For those rows n of A249223 which are weakly increasing, let w(n) denote the maximal entry in the row: sequence gives values of n for which w(n) sets a new record.
1, 6, 72, 120, 1440, 6720, 28800, 80640, 483840, 1612800, 5806080, 7096320, 85155840, 283852800, 510935040, 1476034560, 7947878400, 17712414720, 29520691200, 106274488320, 354248294400, 1653158707200, 2125489766400, 4817776803840, 8029628006400, 28906660823040
Offset: 1
Examples
a(4) = 120 = 2^3 * A053624(4) = 2^3 * 15 and a(7) = 28800 = 2^7 * A053624(7) = 2^7 * 225. - _Hartmut F. W. Hoft_, Mar 29 2022
Programs
-
Mathematica
prevPower2[k_] := If[k==1, 1, 2^(Ceiling[Log[2, k]]-1)] a340506[n_] := Module[{recL={{1, 1}}, q, d, pp}, For[q=1, q<=n, q+=2, d=DivisorSigma[0, q]; pp=prevPower2[q] q; If[First[Last[recL]]
Hartmut F. W. Hoft, Mar 29 2022 *)
Formula
a(n) = 2^t(n) * A053624(n), n > 1, where t(n) is the largest exponent satisfying 2^t(n) < A053624(n) and A053624(n) is the odd part of a(n) - see the comment in A250071. - Hartmut F. W. Hoft, Mar 29 2022
Extensions
a(12)-a(26) from Hartmut F. W. Hoft, Mar 29 2022
Comments