cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A250068 Maximum width of any region in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 11 2014

Keywords

Comments

Since the width of the single region of the symmetric representation of sigma( 2^ceiling((p-1)*(log_2 3) - 1) * 3^(p-1) ), for prime number p, at the diagonal equals p, this sequence contains an increasing subsequence (see A250071).
a(n) is also the number of layers of width 1 in the symmetric representation of sigma(n). For more information see A001227. - Omar E. Pol, Dec 13 2016

Examples

			a(6) = 2 since the sequence of widths at each unit step in the symmetric representation of sigma(6) = 12 is 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1. For visual examples see A237270, A237593 and sequences referenced in these.
		

Crossrefs

Programs

  • Mathematica
    (* function a2[ ] is defined in A249223 *)
    a250068[n_]:=Max[a2[n]]
    a250068[{m_,n_}]:=Map[a250068,Range[m,n]]
    a250068[{1,100}](* data *)
  • PARI
    t237048(n,k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
    kmax(n) = (sqrt(1+8*n)-1)/2;
    t249223(n,k) = sum(j=1, k, (-1)^(j+1)*t237048(n,j));
    a(n) = my(wm = t249223(n, 1)); for (k=2, kmax(n), wm = max(wm, t249223(n, k))); wm; \\ Michel Marcus, Sep 20 2015

Formula

a(n) = max_{k=1..floor((sqrt(8*n+1) - 1)/2)} (Sum_{j=1..k}(-1)^(j+1)*A237048(n, j)), for n >= 1.

A053624 Highly composite odd numbers: odd numbers where d(n) increases to a record.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 225, 315, 945, 1575, 2835, 3465, 10395, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815
Offset: 1

Views

Author

Stefano Lanfranco (lastefano(AT)yahoo.it), Mar 21 2000

Keywords

Comments

Also numbers k such that the number of partitions of k into consecutive integers is a record. For example, 45 = 22+23 = 14+15+16 = 7+8+9+10+11 = 5+6+7+8+9+10 = 1+2+3+4+5+6+7+8+9, six such partitions, but all smaller terms have fewer such partitions (15 has four). See A000005 comments and A038547 formula. - Rick L. Shepherd, Apr 20 2008
From Hartmut F. W. Hoft, Mar 29 2022: (Start)
Also the odd parts of the numbers in A340506, see also comments in A250071.
A140864 is a subsequence. (End)
Positions of records in A001227, i.e., integers whose number of odd divisors sets a new record. - Bernard Schott, Jul 18 2022
Conjecture: all terms after the first three terms are congruent to 5 mod 10. - Harvey P. Dale, Jul 05 2023
From Keith F. Lynch, Jan 12 2024: (Start)
Dale's conjecture is correct. a(n) can't be even, since then a(n)/2 would be a smaller number with the same number of odd divisors. The respective powers of the successive odd primes can't increase, since if they did, swapping them would give a smaller number with the same number of divisors, e.g., 3^2 * 5^4 has the same number of divisors as 3^4 * 5^2, and the latter is smaller. As such, every a(n) must be an odd multiple of 5, hence congruent to 5 mod 10, unless it's simply a power of 3. But multiplying a power of 3 by 3 gives just one more divisor while multiplying a power of 3 by 5 doubles the number of divisors, so after a(n) = 9 all a(n) must be congruent to 5 mod 10, i.e., have a rightmost decimal digit of 5.
This has three equivalent definitions:
* Odd numbers with more divisors than any smaller odd number.
* Numbers with more odd divisors than any smaller number, i.e., record high values of A001227.
* Numbers with a greater excess of odd divisors over even divisors than any smaller number, i.e., record high values of A048272. (End)

Examples

			9 is in the sequence because 9 has 3 divisors {1, 3, 9}, which is more than any previous odd number.
		

Crossrefs

Programs

  • Mathematica
    nn = 10^6; maxd = 0;
    Reap[For[n = 1, n <= nn, n += 2, If[(nd = DivisorSigma[0, n]) > maxd, Print[n]; Sow[n]; maxd = nd]]][[2, 1]] (* Jean-François Alcover, Sep 20 2018, from PARI *)
    next[n_] := Module[{k=n, r=DivisorSigma[0, n]}, While[DivisorSigma[0, k]<=r, k+=2]; k]
    a053624[n_] := NestList[next, 1, n-1]/; n>=1 (* returns n numbers *)
    a053624[31] (* Hartmut F. W. Hoft, Mar 29 2022 *)
    DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,1,131*10^6,2}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    lista(nn) = {maxd = 0; forstep (n=1, nn, 2, if ((nd = numdiv(n)) > maxd, print1(n, ", "); maxd = nd;););} \\ Michel Marcus, Apr 21 2014

A250071 Smallest number k such that the symmetric representation of sigma(k) has maximum width n for those k whose representation has nondecreasing width up to the diagonal.

Original entry on oeis.org

1, 6, 72, 120, 5184, 1440, 373248, 6720, 28800, 103680, 1934917632, 80640, 278628139008, 7464960, 2073600, 483840, 1444408272617472, 1612800, 103997395628457984, 5806080, 298598400, 77396705280, 539122498937926189056, 7096320, 1658880000, 5572562780160, 90316800, 418037760, 402452788967166148425547776, 116121600
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 11 2014

Keywords

Comments

The symmetric representation of sigma(k) has nondecreasing width to the diagonal precisely when all odd divisors counted in the k-th row of A237048 occur at odd indices. If we write k = 2^m * q with m >= 0 and q odd, this property is equivalent to q < 2^(m+1).
The values for a(11), a(13), a(17) and a(19) were computed directly using the formula k = 2^m * 3^(p-1) where p is one of the four primes and m the smallest exponent so that 3^(p-1) < 2^(m+1). Each of these numbers has a symmetric representation of nondecreasing width ending in a prime number width, and they are the first such numbers since the number of divisors of an odd number is a prime precisely when the number is a power of a prime.
The other numbers listed whose symmetric representations of sigma(k) have nondecreasing width are smaller than 7500000. The only additional numbers k <= 100000000 are a(24) = 7096320, a(27) = 90316800 and a(32) = 85155840.
See A340506 for another way to look at this data. - N. J. A. Sloane, Jan 23 2021

Examples

			a(6) = 1440 = 2^5 * 3^2 * 5 has 6 odd divisors. It is the smallest number of the form 2^m * q with m > 0, q odd and such that q < 2^(m+1).
		

Crossrefs

Programs

  • Mathematica
    (* function a2[ ] is defined in A249223 *)
    smallQ[n_] := Module[{x=2^IntegerExponent[n,2]}, n/x<2x]
    ndWidth[{m_,n_}] := Select[Range[m, n], smallQ]
    a250071[x_List] := Module[{i, max, acc={{1, 1}}}, For[i=1, i<=Length[x], i++, max={Max[a2[x[[i]]]], x[[i]]}; If[!MemberQ[Transpose[acc][[1]], max[[1]]], AppendTo[acc, max]]]; acc]
    (* returns (argument,result) data pairs since sequence is non-monotonic *)
    Sort[a250071[ndWidth[{1,100000000}]]] (* computed in steps *)
    (* alternate implementation using function f[ ] by T. D. Noe in A162247 *)
    sF[n_] := Min[Map[Apply[Times, Prime[Range[2, Length[#]+1]]^#]&, Map[Reverse[#-1]&, f[n]]]]
    f1U[n_] := Module[{s=sF[n], k}, k=Floor[Log[2, s]]; 2^k s]
    a250071[n_] := Map[f1U, Range[n]]
    a250071[30] (* Hartmut F. W. Hoft, Nov 27 2024 *)

Formula

a(n) = min(2^m * q, m >= 0 & q odd & sigma_0(q) = n & q < 2^(m+1)) where sigma_0 is the number of divisors.
a(p) = 2^ceiling((p-1)*(log_2(3)) - 1) * 3^(p-1) for primes p.

Extensions

a(21)-a(30) from Hartmut F. W. Hoft, Nov 27 2024

A053640 Number of divisors of highly composite odd numbers (A053624).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 192, 216, 240, 256, 288, 320, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2560, 2880, 3072, 3456
Offset: 1

Views

Author

Stefano Lanfranco (lastefano(AT)yahoo.it), Mar 22 2000

Keywords

Comments

a(n) is the number of divisors of the odd parts of A340506(n); see also comments in A250071. - Hartmut F. W. Hoft, Mar 29 2022

Examples

			a(15) = 6 since A053624(6) = 45 has the 6 divisors 1, 3, 5, 9, 15, 45. - _Hartmut F. W. Hoft_, Mar 29 2022
		

Crossrefs

Programs

  • Mathematica
    a053640[n_] := Module[{recL={1}, q, d}, For[q=1, q<=n, q+=2, d=Length[Divisors[q]]; If[Last[recL]Hartmut F. W. Hoft, Mar 29 2022 *)

Formula

a(n) = A000005(A053624(n)).

Extensions

Extended by Ray Chandler, Jan 12 2012
Showing 1-4 of 4 results.