cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A279387 Irregular triangle read by rows: suppose the symmetric representation of sigma(n) consists of m = A250068(n) layers of width 1, arranged in increasing order; then T(n,k) (n >= 1, 1 <= k <= m) is the number of subparts in the k-th layer.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 4, 2, 2, 1, 1, 3, 2, 4, 1, 1, 2, 1, 3, 2, 1, 4, 2, 3, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 3, 2, 2, 3, 3, 2, 2, 1, 1, 3, 3, 4, 2, 2, 1, 3, 4, 1, 1, 4, 2, 2, 1, 1, 2, 2, 2, 5, 1, 1, 4, 1, 3, 2, 2, 4, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2016

Keywords

Comments

The "subparts" of the symmetric representation of sigma(n) are defined to be the regions that arise after the dissection of the symmetric representation of sigma(n) into successive layers of width 1.
The number of layers of width 1 in the symmetric representation of sigma(n) is given in A250068.
The number of subparts in the first layer of the symmetric representation of sigma(n) is equal to A237271(n).
We can find the symmetric representation of sigma(n) as the terraces at the n-th level (starting from the top) of the stepped pyramid described in A245092.
(All above comments are essentially the same as the comments dated Nov 05 2016 at the old version of A275601, which was the same as A001227).
The sum of row n equals the number of subparts in the symmetric representation of sigma(n).
Conjecture:
The number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n.
From Hartmut F. W. Hoft, Dec 16 2016: (Start)
Proof:
Each row of the irregular triangle of A262045 can be interpreted as a step function of step sizes 1, 0, and -1. The numbers in row n are the widths of the segments in the parts of the symmetric representation of sigma(n). Each new subpart in a segment (in the left half) of row n starts at the same odd index that represents an odd divisor d of n in the irregular triangle of A237048. Either a subpart ends at an even index e, representing a second odd divisor, which satisfies d * e = oddpart(n), and thus the entire subpart is duplicated in the symmetric portion of the representation, or a subpart runs through the center and continues contiguously into the right half of the symmetric portion of the representation. In other words, the number of subparts in row n equals the number of odd divisors of n, i.e., the conjecture is true. (End)

Examples

			Triangle begins (first 18 rows):
1;
1;
2;
1;
2;
1, 1;
2;
1;
3;
2;
2;
1, 1;
2;
2;
3, 1;
1;
2;
1, 2;
...
For n = 12, the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
.                          _                                    _
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                    _ _ _| |                             _ _ _| |
.                  _|    _ _|                           _|  _ _ _|
.                _|     |                             _|  _| |
.               |      _|                            |  _|  _|
.               |  _ _|                              | |_ _|
.    _ _ _ _ _ _| |    28                 _ _ _ _ _ _| |    5
.   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
.                                                       23
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(12)        of the symmetric representation
.   has only one part which            of sigma(12) into layers of
.   contains 28 cells, so              width 1 we can see two "subparts"
.   A237271(12) = 1.                   that contain 23 and 5 cells
.                                      respectively, so the 12th row of
.                                      this triangle is [1, 1], and the
.                                      row sum is A001227(12) = 2,
.                                      equaling the number of odd divisors
.                                      of 12.
.
For n = 15, the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3:
.                                _                                  _
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                          _ _ _|_|                           _ _ _|_|
.                      _ _| |      8                      _ _| |      8
.                     |    _|                            |  _ _|
.                    _|  _|                             _| |_|
.                   |_ _|  8                           |_ _|  1
.                   |                                  |    7
.    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                    8                                  8
.
.   Figure 3. The symmetric            Figure 4. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four "subparts".
.   8 cells, so A237271(15) = 3.       The first layer has three subparts:
.                                      [8, 7, 8]. The second layer has
.                                      only one subpart of size 1, so
.                                      the 15th row of this triangle is
.                                      [3, 1], and the row sum is
.                                      A001227(15) = 4, equaling the
.                                      number of odd divisors of 15.
.
For n = 360, the 359th row of triangle A237593 is [180, 61, 30, 19, 12, 9, 7, 6, 4, 4, 3, 3, 2, 3, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1] and the 360th row of the same triangle is [181, 60, 31, 18, 13, 9, 7, 5, 5, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1], so have that the symmetric representation of sigma(360) = 1170 has only one part, five layers, and six subparts: [(719), (237), (139), (71), (2, 2)], so the 360th row of this triangle is [1, 1, 1, 1, 2], and the row sum is A001227(360) = 6, equaling the number of odd divisors of 360 (the diagram is too large to include).
From _Hartmut F. W. Hoft_, Dec 16 2016: (Start)
45 has 6 subparts of which 2 have symmetric duplicates and 2 span the center. Row length is 18 and "|" indicates the center marker for a row.
1 2 3 4 5 6 7 8 9|9 8 7 6 5 4 3 2 1  : position indices
1 0 1 1 2 1 1 1 2|2 1 1 1 2 1 1 0 1  : row 45 of A262045
1   1 1 1 1 1 1 1|1 1 1 1 1 1 1   1  : layer 1
        1       1|1       1          : layer 2
1 1 1 0 1 1 0 0 1|                   : row 45 of A237048 (odd divisors)
+ - + . + - . . +|                   : change in level ("." no change)
90 has 6 subparts and 3 layers (row length is 24).
1 2 3 4 5 6 7 8..10..12|.14..16..18..20..22..24 : position indices
1 1 2 1 2 2 2 2 3 3 3 2|2 3 3 3 2 2 2 2 1 2 1 1 : row 90 of A262045
1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 : layer 1
    1   1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1   1     : layer 2
                1 1 1  |  1 1 1                 : layer 3
1 0 1 1 1 0 0 0 1 0 0 1|                        : row 90 of A237048
+ . + - + . . . + . . -|                        : change in level ("." no change)
The process of successive levels provides two "default" dissections of the symmetric representation into subparts from the boundary at n towards the boundary at n-1 or in the reverse direction. (End)
From _Omar E. Pol_, Nov 24 2020: (Start)
For n = 18 we have that the 17th row of triangle A237593 is [9, 4, 2, 1, 1, 1, 1, 2, 4, 9] and the 18th row of the same triangle is [10, 3, 2, 2, 1, 1, 2, 2, 3, 10], so the diagram of the symmetric representation of sigma(18) = 39 is constructed as shown below in Figure 5:
.                                     _                                      _
.                                    | |                                    | |
.                                    | |                                    | |
._                                   | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                                    | |                                    | |
.                             _ _ _ _| |                             _ _ _ _| |
.                            |    _ _ _|                            |  _ _ _ _|
.                           _|   |                                 _| | |
.                         _|  _ _|                               _|  _|_|
.                     _ _|  _|                               _ _|  _|    2
.                    |     |  39                            |  _ _|
.                    |  _ _|                                | |_ _|
.                    | |                                    | |    2
.   _ _ _ _ _ _ _ _ _| |                   _ _ _ _ _ _ _ _ _| |
.  |_ _ _ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _ _ _|
.                                                              35
.
.   Figure 5. The symmetric               Figure 6. After the dissection
.   representation of sigma(18)           of the symmetric representation
.   has one part of size 39, so           of sigma(18) into layers of
.   A237271(18) = 1.                      width 1 we can see three "subparts".
.                                         The first layer has one subpart of
.                                         size 35. The second layer has
.                                         two subparts of size 2, so
.                                         the 18th row of this triangle is
.                                         [1, 2], and the row sum is
.                                         A001227(18) = 3.
(End)
		

Crossrefs

The sum of row n equals A001227(n).
Hence, if n is odd, the sum of row n equals A000005(n).
Row n has length A250068(n).
Column 1 gives A237271.
For more information about "subparts" see A279388 and A279391.

Programs

  • Mathematica
    (* function a341969[ ] is defined in A341969 *)
    a279387[n_] := Module[{widthL=a341969[n], partL, cL, top, ft, sL}, partL=Select[SplitBy[widthL, #==0&], #!={0}&]; cL=Table[0, Max[widthL]]; While[partL!={}, top=Last[partL]; ft=First[top]; sL=Select[SplitBy[top, #==ft&], #!={ft}&];
    cL[[ft]]++; partL=Join[Most[partL], sL]]; cL]
    Flatten[a279387[74]] (* the first 74 rows of the table; Hartmut F. W. Hoft, Feb 24 2021 *)

Extensions

Definition edited by Omar E. Pol and N. J. A. Sloane, Nov 25 2020

A237271 Number of parts in the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 1, 3, 2, 4, 1, 2, 1, 2, 1, 4, 2, 3, 1, 2, 2, 4, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 4, 2, 2, 1, 4, 1, 4, 2, 2, 1, 2, 2, 5, 1, 4, 1, 2, 2, 4, 3, 2, 1, 2, 2, 4, 2, 3, 2, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 25 2014

Keywords

Comments

The diagram of the symmetry of sigma has been via A196020 --> A236104 --> A235791 --> A237591 --> A237593.
For more information see A237270.
a(n) is also the number of terraces at n-th level (starting from the top) of the stepped pyramid described in A245092. - Omar E. Pol, Apr 20 2016
a(n) is also the number of subparts in the first layer of the symmetric representation of sigma(n). For the definion of "subpart" see A279387. - Omar E. Pol, Dec 08 2016
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n. (See the second example). - Omar E. Pol, Dec 20 2016
From Hartmut F. W. Hoft, Dec 26 2016: (Start)
Using odd prime number 3, observe that the 1's in the 3^k-th row of the irregular triangle of A237048 are at index positions
3^0 < 2*3^0 < 3^1 < 2*3^1 < ... < 2*3^((k-1)/2) < 3^(k/2) < ...
the last being 2*3^((k-1)/2) when k is odd and 3^(k/2) when k is even. Since odd and even index positions alternate, each pair (3^i, 2*3^i) specifies one part in the symmetric representation with a center part present when k is even. A straightforward count establishes that the symmetric representation of 3^k, k>=0, has k+1 parts. Since this argument is valid for any odd prime, every positive integer occurs infinitely many times in the sequence. (End)
a(n) = number of runs of consecutive nonzero terms in row n of A262045. - N. J. A. Sloane, Jan 18 2021
Indices of odd terms give A071562. Indices of even terms give A071561. - Omar E. Pol, Feb 01 2021
a(n) is also the number of prisms in the three-dimensional version of the symmetric representation of k*sigma(n) where k is the height of the prisms, with k >= 1. - Omar E. Pol, Jul 01 2021
With a(1) = 0; a(n) is also the number of parts in the symmetric representation of A001065(n), the sum of aliquot parts of n. - Omar E. Pol, Aug 04 2021
The parity of this sequence is also the characteristic function of numbers that have middle divisors. - Omar E. Pol, Sep 30 2021
a(n) is also the number of polycubes in the 3D-version of the ziggurat of order n described in A347186. - Omar E. Pol, Jun 11 2024
Conjecture 1: a(n) is the number of odd divisors of n except the "e" odd divisors described in A005279. Thus a(n) is the length of the n-th row of A379288. - Omar E. Pol, Dec 21 2024
The conjecture 1 was checked up n = 10000 by Amiram Eldar. - Omar E. Pol, Dec 22 2024
The conjecture 1 is true. For a proof see A379288. - Hartmut F. W. Hoft, Jan 21 2025
From Omar E. Pol, Jul 31 2025: (Start)
Conjecture 2: a(n) is the number of 2-dense sublists of divisors of n.
We call "2-dense sublists of divisors of n" to the maximal sublists of divisors of n whose terms increase by a factor of at most 2.
In a 2-dense sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
Example: for n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2], [5, 10], so a(10) = 2.
The conjecture 2 is essentially the same as the second conjecture in the Comments of A384149. See also Peter Munn's formula in A237270.
The indices where a(n) = 1 give A174973 (2-dense numbers). See the proof there. (End)
Conjecture 3: a(n) is the number of divisors p of n such that p is greater than twice the adjacent previous divisor of n. The divisors p give the n-th row of A379288. - Omar E. Pol, Aug 02 2025

Examples

			Illustration of initial terms (n = 1..12):
---------------------------------------------------------
n   A000203  A237270    a(n)            Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|    _|_| | | | | |
5       6      3+3       2     |_ _ _|  _|  _ _|_| | | |
6      12      12        1     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|    _ _|
8      15      15        1     |_ _ _ _ _|  _|     |
9      13      5+3+5     3     |_ _ _ _ _| |      _|
10     18      9+9       2     |_ _ _ _ _ _|  _ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      28        1     |_ _ _ _ _ _ _|
...
For n = 9 the sum of divisors of 9 is 1+3+9 = A000203(9) = 13. On the other hand the 9th set of symmetric regions of the diagram is formed by three regions (or parts) with 5, 3 and 5 cells, so the total number of cells is 5+3+5 = 13, equaling the sum of divisors of 9. There are three parts: [5, 3, 5], so a(9) = 3.
From _Omar E. Pol_, Dec 21 2016: (Start)
Illustration of the diagram of subparts (n = 1..12):
---------------------------------------------------------
n   A000203  A279391  A001227           Diagram
---------------------------------------------------------
.                               _ _ _ _ _ _ _ _ _ _ _ _
1       1      1         1     |_| | | | | | | | | | | |
2       3      3         1     |_ _|_| | | | | | | | | |
3       4      2+2       2     |_ _|  _|_| | | | | | | |
4       7      7         1     |_ _ _|  _ _|_| | | | | |
5       6      3+3       2     |_ _ _| |_|  _ _|_| | | |
6      12      11+1      2     |_ _ _ _|  _| |  _ _|_| |
7       8      4+4       2     |_ _ _ _| |_ _|_|  _ _ _|
8      15      15        1     |_ _ _ _ _|  _|  _| |
9      13      5+3+5     3     |_ _ _ _ _| |  _|  _|
10     18      9+9       2     |_ _ _ _ _ _| |_ _|
11     12      6+6       2     |_ _ _ _ _ _| |
12     28      23+5      2     |_ _ _ _ _ _ _|
...
For n = 6 the symmetric representation of sigma(6) has two subparts: [11, 1], so A000203(6) = 12 and A001227(6) = 2.
For n = 12 the symmetric representation of sigma(12) has two subparts: [23, 5], so A000203(12) = 28 and A001227(12) = 2. (End)
From _Hartmut F. W. Hoft_, Dec 26 2016: (Start)
Two examples of the general argument in the Comments section:
Rows 27 in A237048 and A249223 (4 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12
27: 1  1 1 0 0 1                           1's in A237048 for odd divisors
    1 27 3     9                           odd divisors represented
27: 1  0 1 1 1 0 0 1 1 1 0 1               blocks forming parts in A249223
Rows 81 in A237048 and A249223 (5 parts)
i:  1  2 3 4 5 6 7 8 9 . . 12. . . 16. . . 20. . . 24
81: 1  1 1 0 0 1 0 0 1 0 0 0                          1's in A237048 f.o.d
    1 81 3    27     9                                odd div. represented
81: 1  0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1  blocks fp in A249223
(End)
		

Crossrefs

Programs

  • Mathematica
    a237271[n_] := Length[a237270[n]] (* code defined in A237270 *)
    Map[a237271, Range[90]] (* data *)
    (* Hartmut F. W. Hoft, Jun 23 2014 *)
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Count[d, ?(OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &)]]; Array[a, 100] (* _Amiram Eldar,  Dec 22 2024 *)
  • PARI
    fill(vcells, hga, hgb) = {ic = 1; for (i=1, #hgb, if (hga[i] < hgb[i], for (j=hga[i], hgb[i]-1, cell = vector(4); cell[1] = i - 1; cell[2] = j; vcells[ic] = cell; ic ++;););); vcells;}
    findfree(vcells) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findxy(vcells, x, y) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[1]==x) && (vcelli[2]==y) && (vcelli[3] == 0) && (vcelli[4] == 0), return (i));); return (0);}
    findtodo(vcells, iz) = {for (i=1, #vcells, vcelli = vcells[i]; if ((vcelli[3] == iz) && (vcelli[4] == 0), return (i)); ); return (0);}
    zcount(vcells) = {nbz = 0; for (i=1, #vcells, nbz = max(nbz, vcells[i][3]);); nbz;}
    docell(vcells, ic, iz) = {x = vcells[ic][1]; y = vcells[ic][2]; if (icdo = findxy(vcells, x-1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x+1, y), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y-1), vcells[icdo][3] = iz); if (icdo = findxy(vcells, x, y+1), vcells[icdo][3] = iz); vcells[ic][4] = 1; vcells;}
    docells(vcells, ic, iz) = {vcells[ic][3] = iz; while (ic, vcells = docell(vcells, ic, iz); ic = findtodo(vcells, iz);); vcells;}
    nbzb(n, hga, hgb) = {vcells = vector(sigma(n)); vcells = fill(vcells, hga, hgb); iz = 1; while (ic = findfree(vcells), vcells = docells(vcells, ic, iz); iz++;); zcount(vcells);}
    lista(nn) = {hga = concat(heights(row237593(0), 0), 0); for (n=1, nn, hgb = heights(row237593(n), n); nbz = nbzb(n, hga, hgb); print1(nbz, ", "); hga = concat(hgb, 0););} \\ with heights() also defined in A237593; \\ Michel Marcus, Mar 28 2014
    
  • Python
    from sympy import divisors
    def a(n: int) -> int:
        divs = list(divisors(n))
        d = [divs[i:i+2] for i in range(len(divs) - 1)]
        s = sum(1 for pair in d if len(pair) == 2 and pair[1] % 2 == 1 and pair[1] >= 2 * pair[0])
        return s + 1
    print([a(n) for n in range(1, 80)])  # Peter Luschny, Aug 05 2025

Formula

a(n) = A001227(n) - A239657(n). - Omar E. Pol, Mar 23 2014
a(p^k) = k + 1, where p is an odd prime and k >= 0. - Hartmut F. W. Hoft, Dec 26 2016
Theorem: a(n) <= number of odd divisors of n (cf. A001227). The differences are in A239657. - N. J. A. Sloane, Jan 19 2021
a(n) = A340846(n) - A340833(n) + 1 (Euler's formula). - Omar E. Pol, Feb 01 2021
a(n) = A000005(n) - A243982(n). - Omar E. Pol, Aug 02 2025

A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of sigma(n), with n>=1 and 1<=k<=2n-1. Explanation: consider the diagram of the symmetric representation of sigma(n) described in A236104, A237593 and other related sequences. Imagine that the diagram for sigma(n) contains 2n-1 equidistant segments which are parallel to the main diagonal [(0,0),(n,n)] of the quadrant. The segments are located on the diagonal of the cells. The distance between two parallel segment is equal to sqrt(2)/2. T(n,k) is the length of the k-th segment divided by sqrt(2). Note that the triangle contains nonnegative terms because for some n the value of some widths is equal to zero. For an illustration of some widths see Hartmut F. W. Hoft's contribution in the Links section of A237270.
Row n has length 2*n-1.
Row sums give A000203.
If n is a power of 2 then all terms of row n are 1's.
If n is an even perfect number then all terms of row n are 1's except the middle term which is 2.
If n is an odd prime then row n lists (n+1)/2 1's, n-2 zeros, (n+1)/2 1's.
The number of blocks of positive terms in row n gives A237271(n).
The sum of the k-th block of positive terms in row n gives A237270(n,k).
It appears that the middle diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
It appears that the trapezoidal numbers (A165513) are also the numbers k > 1 with the property that some of the noncentral widths of the symmetric representation of sigma(k) are not equal to 1. - Omar E. Pol, Mar 04 2023

Examples

			Triangle begins:
  1;
  1,1,1;
  1,1,0,1,1;
  1,1,1,1,1,1,1;
  1,1,1,0,0,0,1,1,1;
  1,1,1,1,1,2,1,1,1,1,1;
  1,1,1,1,0,0,0,0,0,1,1,1,1;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1;
  ...
---------------------------------------------------------------------------
.        Written as an isosceles triangle              Diagram of
.              the sequence begins:               the symmetry of sigma
---------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,1,1;                     |_ _|_| | | | | | | | | |
.                  1,1,0,1,1;                   |_ _|  _|_| | | | | | | |
.                1,1,1,1,1,1,1;                 |_ _ _|    _|_| | | | | |
.              1,1,1,0,0,0,1,1,1;               |_ _ _|  _|  _ _|_| | | |
.            1,1,1,1,1,2,1,1,1,1,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,1,1,1,0,0,0,0,0,1,1,1,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;         |_ _ _ _ _|  _|     |
.      1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;       |_ _ _ _ _| |      _|
.    1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;     |_ _ _ _ _ _|  _ _|
.  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;   |_ _ _ _ _ _| |
.1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _|
...
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616.
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of this seq:  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle.
For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851.
More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
		

Crossrefs

Programs

  • Mathematica
    (* function segments are defined in A237270 *)
    a249351[n_] := Flatten[Map[segments, Range[n]]]
    a249351[10] (* Hartmut F. W. Hoft, Jul 20 2022 *)

A296508 Irregular triangle read by rows: T(n,k) is the size of the subpart that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned subpart is already associated to a previous peak or if there is no subpart adjacent to the k-th peak, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 11, 1, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 23, 5, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 7, 1, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 35, 2, 0, 2, 0, 10, 0, 0, 0, 10, 39, 0, 3, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 47, 13, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

Conjecture: row n is formed by the odd-indexed terms of the n-th row of triangle A280850 together with the even-indexed terms of the same row but listed in reverse order. Examples: the 15th row of A280850 is [8, 8, 7, 0, 1] so the 15th row of this triangle is [8, 7, 1, 0, 8]. The 75th row of A280850 is [38, 38, 21, 0, 3, 3, 0, 0, 0, 21, 0] so the 75h row of this triangle is [38, 21, 3, 0, 0, 0, 21, 0, 3, 0, 38].
For the definition of "subparts" see A279387.
For more information about the mentioned Dyck paths see A237593.
T(n,k) could be called the "charge" of the k-th peak of the largest Dyck path of the symmetric representation of sigma(n).
The number of zeros in row n is A238005(n). - Omar E. Pol, Sep 11 2021

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  11,  1,  0;
   4,  0,  4;
  15,  0,  0;
   5,  3,  5;
   9,  0,  9,  0;
   6,  0,  0,  6;
  23,  5,  0,  0;
   7,  0,  0,  7;
  12,  0, 12,  0;
   8,  7,  1,  0,  8;
  31,  0,  0,  0,  0;
   9,  0,  0,  0,  9;
  35,  2,  0,  2,  0;
  10,  0,  0,  0, 10;
  39,  0,  3,  0,  0;
  11,  5,  0,  5,  0, 11;
  18,  0,  0,  0, 18,  0;
  12,  0,  0,  0,  0, 12;
  47, 13,  0,  0,  0,  0;
  13,  0,  5,  0,  0, 13;
  21,  0,  0,  0  21,  0;
  14,  6,  0,  6,  0, 14;
  55,  0,  0,  1,  0,  0,  0;
  ...
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) is constructed in the third quadrant as shown below in Figure 1:
.    _                                  _
.   | |                                | |
.   | |                                | |
.   | |                                | |
. 8 | |                                | |
.   | |                                | |
.   | |                                | |
.   | |                                | |
.   |_|_ _ _                           |_|_ _ _
.         | |_ _                      8      | |_ _
.         |_    |                            |_ _  |
.           |_  |_                          7  |_| |_
.          8  |_ _|                           1  |_ _|
.                 |                             0    |
.                 |_ _ _ _ _ _ _ _                   |_ _ _ _ _ _ _ _
.                 |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                         8                         8
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four subparts,
.   8 cells, so the 15th row of        so the 15th row of this triangle is
.   triangle A237270 is [8, 8, 8].     [8, 7, 1, 0, 8]. See also below.
.
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.              0 _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _ 0
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_ 0
.    0 _ _ _| |    0 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |    0 _ _| |   11 _ _ _ _          |_  |         | |
.     | |     |  _ _|  1 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |    0 _|_| |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|  0 _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|0    | |     | |
.   | |     |_|_ _     0  |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |  0 _|  _ _ _|0    | |
.   |_|_ _ _     0  |_   4        |_ _ _ _ _|  _|  _| |    _ _ _| |
.  8      | |_ _   0  |                     15|  _|  _|   |  _ _ _|
.         |_ _  |     |_ _ _ _ _ _            | |_ _|  0 _| |      0
.        7  |_| |_    |_ _ _ _ _ _|_ _ _ _ _ _| |    5 _|  _|
.          1  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|  0
.            0    |                             23|  _ _|  0
.                 |_ _ _ _ _ _ _ _                | |    0
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains 30 subparts equaling A060831(16), the total number of partitions of all positive integers <= 16 into consecutive parts.
For the construction of the spiral see A239660.
From _Omar E. Pol_, Nov 26 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem). For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described n A280850 and the conjecture applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351:   [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of this seq:  [              8,      7,    1,    0,      8              ]
The 15th row
of A280851:   [              8,      7,    1,            8              ]
.
(End)
		

Crossrefs

Row sums give A000203.
Row n has length A003056(n).
Column k starts in row A000217(k).
Nonzero terms give A280851.
The number of nonzero terms in row n is A001227(n).
The triangle with n rows contain A060831(n) nonzero terms.

A280850 Irregular triangle read by rows in which row n is constructed with an algorithm using the n-th row of triangle A196020 (see Comments for precise definition).

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 11, 0, 1, 4, 4, 0, 15, 0, 0, 5, 5, 3, 9, 0, 0, 9, 6, 6, 0, 0, 23, 0, 5, 0, 7, 7, 0, 0, 12, 0, 0, 12, 8, 8, 7, 0, 1, 31, 0, 0, 0, 0, 9, 9, 0, 0, 0, 35, 0, 2, 2, 0, 10, 10, 0, 0, 0, 39, 0, 0, 0, 3, 11, 11, 5, 0, 0, 5, 18, 0, 0, 18, 0, 0, 12, 12, 0, 0, 0, 0, 47, 0, 13, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Jan 09 2017

Keywords

Comments

For the construction of the n-th row of this triangle start with a copy of the n-th row of the triangle A196020.
Then replace each element of the m-th pair of positive integers (x, y) with the value (x - y)/2, where "y" is the m-th even-indexed term of the row, and "x" is its previous nearest odd-indexed term not used in another pair in the same row, if such a pair exist. Otherwise T(n,k) = A196020(n,k). (See example).
Observation 1: at least for the first 28 rows of the triangle the nonzero terms in the n-th row are also the subparts of the symmetric representation of sigma(n), assuming the ordering of the subparts in the same row does not matter.
Question 1: are always the nonzero terms of the n-th row the same as all the subparts of the symmetric representation of sigma(n)? If not, what is the index of the row in which appears the first counterexample?
Note that the "subparts" are the regions that arise after the dissection of the symmetric representation of sigma(n) into successive layers of width 1.
For more information about "subparts" see A279387 and A237593.
About the question 1, it appears that the n-th row of the triangle A280851 and the n-th row of this triangle contain the same nonzero numbers, though in different order; checked through n = 250000. - Hartmut F. W. Hoft, Jan 31 2018
From Omar E. Pol, Feb 02 2018: (Start)
Observation 2: at least for the first 28 rows of the triangle we have that in the n-th row the odd-indexed terms, from left to right, together with the even-indexed terms, from right to left, form a finite sequence in which the nonzero terms are the same as the n-th row of triangle A280851, which lists the subparts of the symmetric representation of sigma(n).
Question 2: Are always the same for all rows? If not, what is the index of the row in which appears the first counterexample? (End)
Conjecture: the odd-indexed terms of the n-th row together with the even-indexed terms of the same row but listed in reverse order give the n-th row of triangle A296508 (this is the same conjecture from A296508). - Omar E. Pol, Apr 20 2018

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  11,  0,  1;
   4,  4,  0;
  15,  0,  0;
   5,  5,  3;
   9,  0,  0,  9;
   6,  6,  0,  0;
  23,  0,  5,  0;
   7,  7,  0,  0;
  12,  0,  0, 12;
   8,  8,  7,  0,  1;
  31,  0,  0,  0,  0;
   9,  9,  0,  0,  0;
  35,  0,  2,  2,  0;
  10, 10,  0,  0,  0;
  39,  0,  0,  0,  3;
  11, 11,  5,  0,  0,  5;
  18,  0,  0, 18,  0,  0;
  12, 12,  0,  0,  0,  0;
  47,  0, 13,  0,  0,  0;
  13, 13,  0,  0,  5,  0;
  21,  0,  0, 21,  0,  0;
  14, 14,  6,  0,  0,  6;
  55,  0,  0,  0,  0,  0,  1;
  ...
An example of the algorithm.
For n = 75, the construction of the 75th row of this triangle is as shown below:
.
75th row of A196020:             [149,  73, 47, 0, 25, 19, 0, 0, 0,  5, 0]
.
Odd-indexed terms:                149       47     25      0     0      0
Even-indexed terms:                     73      0      19     0      5
.
First even-indexed nonzero term:        73
First pair:                       149   73
.                                   *----*
Difference: 149 - 73 =                76
76/2 = 38                           *----*
New first pair:                    38   38
.
Second even-indexed nonzero term:                      19
Second pair:                                       25  19
.                                                   *---*
Difference: 25 - 19 =                                 6
6/2 = 3                                             *---*
New second pair:                                    3   3
.
Third even-indexed nonzero term:                                     5
Third pair:                                  47                      5
.                                             *----------------------*
Difference: 47 - 5 =                                     42
42/2 = 21                                     *----------------------*
New third pair:                              21                     21
.
So the 75th row
of this triangle is                [38,  38, 21, 0, 3,  3, 0, 0, 0, 21, 0]
.
On the other hand, the 75th row of A237593 is [38, 13, 7, 4, 3, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 3, 4, 7, 13, 38], and the 74th row of the same triangle is [38, 13, 6, 5, 3, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 3, 5, 6, 13, 38], therefore between both symmetric Dyck paths (described in A237593 and A279387) there are six subparts: [38, 38, 21, 21, 3, 3]. (The diagram of the symmetric representation of sigma(75) is too large to include.) At least in this case the nonzero terms of the 75th row of the triangle coincide with the subparts of the symmetric representation of sigma(75). The ordering of the elements does not matter.
Continuing with the original example, in the 75th row of this triangle we have that the odd-indexed terms, from left to right, together with the even-indexed terms, from right to left, form the finite sequence [38, 21, 3, 0, 0, 0, 21, 0, 3, 0, 38] which is the 75th row of a triangle. At least in this case the nonzero terms coincide with the 75th row of triangle A280851: [38, 21, 3, 21, 3, 38], which lists the six subparts of the symmetric representation of sigma(75) in order of appearance from left to right. - _Omar E. Pol_, Feb 02 2018
In accordance with the conjecture from the Comments section, the finite sequence [38, 21, 3, 0, 0, 0, 21, 0, 3, 0, 38] mentioned above should be the 75th row of triangle A296508. - _Omar E. Pol_, Apr 20 2018
		

Crossrefs

Row sums give A000203.
The number of positive terms in row n is A001227(n).
Row n has length A003056(n).
Column k starts in row A000217(k).

Programs

  • Mathematica
    (* functions row[], line[] and their support are defined in A196020 *)
    (* maintain a stack of odd indices with nonzero entries for matching *)
    a280850[n_] := Module[{a=line[n], r=row[n], stack={1}, i, j, b}, For[i=2, i<=r, i++, If[a[[i]]!=0, If[OddQ[i], AppendTo[stack, i], j=Last[stack]; b=(a[[j]]-a[[i]])/2; a[[i]]=b; a[[j]]=b; stack=Drop[stack, -1]]]]; a]
    Flatten[Map[a280850,Range[24]]] (* data *)
    TableForm[Map[a280850, Range[28]], TableDepth->2] (* triangle in Example *)
    (* Hartmut F. W. Hoft, Jan 31 2018 *)

Extensions

Name edited by Omar E. Pol, Nov 11 2018

A280851 Irregular triangle read by rows in which row n lists the subparts of the symmetric representation of sigma(n), ordered by order of appearance in the structure, from left to right.

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 11, 1, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 23, 5, 7, 7, 12, 12, 8, 7, 1, 8, 31, 9, 9, 35, 2, 2, 10, 10, 39, 3, 11, 5, 5, 11, 18, 18, 12, 12, 47, 13, 13, 5, 13, 21, 21, 14, 6, 6, 14, 55, 1, 15, 15, 59, 3, 7, 3, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 9, 3, 18, 71, 10, 10, 19, 19, 30, 30
Offset: 1

Views

Author

Omar E. Pol, Jan 09 2017

Keywords

Comments

The terms in the n-th row are the same as the terms in the n-th row of triangle A279391, but in some rows the terms appear in distinct order.
First differs from A279391 at a(28) = T(15,3).
Also nonzero terms of A296508. - Omar E. Pol, Feb 11 2018

Examples

			Triangle begins (rows 1..16):
   1;
   3;
   2,  2;
   7;
   3,  3;
  11,  1;
   4,  4;
  15;
   5,  3,  5;
   9,  9;
   6,  6;
  23,  5;
   7,  7;
  12, 12;
   8,  7,  1,  8;
  31;
...
For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
.                          _                                    _
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                    _ _ _| |                             _ _ _| |
.                  _|    _ _|                           _|  _ _ _|
.                _|     |                             _|  _| |
.               |      _|                            |  _|  _|
.               |  _ _|                              | |_ _|
.    _ _ _ _ _ _| |     28                _ _ _ _ _ _| |    5
.   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
.                                                       23
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(12)        of the symmetric representation
.   has only one part which            of sigma(12) into layers of
.   contains 28 cells, so              width 1 we can see two subparts
.   the 12th row of the                that contain 23 and 5 cells
.   triangle A237270 is [28].          respectively, so the 12th row of
.                                      this triangle is [23, 5].
.
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3:
.                                _                                  _
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                          _ _ _|_|                           _ _ _|_|
.                      _ _| |      8                      _ _| |      8
.                     |    _|                            |  _ _|
.                    _|  _|                             _| |_|
.                   |_ _|  8                           |_ _|  1
.                   |                                  |    7
.    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                    8                                  8
.
.   Figure 3. The symmetric            Figure 4. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four "subparts".
.   8 cells, so the 15th row of        The first layer has three subparts:
.   triangle A237270 is [8, 8, 8].     [8, 7, 8]. The second layer has
.                                      only one subpart of size 1. The
.                                      15th row of this triangle is
.                                      [8, 7, 1, 8].
.
From _Hartmut F. W. Hoft_, Jan 31 2018: (Start)
The subparts of 36 whose symmetric representation of sigma has maximum width 2 are 71, 10, and 10.
The (size, width level) pairs of the six subparts of the symmetric representation of sigma(63) which consists of five parts are (32,1), (12,1), (11,1), (5,2), (12,1), and (32,1).
The subparts of perfect number 496 are 991, the length of its entire Dyck path, and 1 at the diagonal.
Number 10080, the smallest number whose symmetric representation of sigma has maximum width 10 (see A250070), has 12 subparts; its (size, width level) pairs are (20159,1), (6717,2), (4027,3), (2873,4), (2231,5), (1329,6), (939,7), (541,8), (403,9), (3,10), (87,10), and (3,10). The size of the first subpart is the length of the entire Dyck path so that the symmetric representation consists of a single part. The first subpart at the 10th level occurs at coordinates (6926,7055) ... (6929,7055). (End)
From _Omar E. Pol_, Dec 26 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of triangle   [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A279387 and also A296508. (End)
		

Crossrefs

Row sums give A000203.
The length of row n equals A001227(n).
Hence, if n is odd the length of row n equals A000005(n).
For the definition of "subparts" see A279387.
For the triangle of sums of subparts see A279388.

Programs

  • Mathematica
    row[n_] := Floor[(Sqrt[8n+1]-1)/2]
    f[n_] := Map[Ceiling[(n+1)/#-(#+1)/2] - Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
    a237593[n_] := Module[{a=f[n]}, Join[a, Reverse[a]]]
    g[n_] := Map[If[Mod[n - #*(#+1)/2, #]==0, (-1)^(#+1), 0]&, Range[row[n]]]
    a262045[n_] := Module[{a=Accumulate[g[n]]}, Join[a, Reverse[a]]]
    findStart[list_] := Module[{i=1}, While[list[[i]]==0, i++]; i]
    a280851[n_] := Module[{lenL=a237593[n], widL=a262045[n], r=row[n], subs={}, acc, start, i}, While[!AllTrue[widL, #==0&], start=findStart[widL]; acc=lenL[[start]]; widL[[start]]-=1; i=start+1; While[i<=2*r && acc!=0, If[widL[[i]]==0, If[start<=r2*r && acc!=0, If[start<=r2] (* triangle *) (* Hartmut F. W. Hoft, Jan 31 2018 *)

Extensions

Name clarified by Hartmut F. W. Hoft and Omar E. Pol, Jan 31 2018

A250070 Smallest number k such that the symmetric representation of sigma(k) has at least one part of width n.

Original entry on oeis.org

1, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440, 3160080, 2827440, 2162160, 2882880, 3603600, 5765760, 5654880, 4324320, 9979200
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 11 2014

Keywords

Comments

The 26 entries starting with a(2) = 6 are products of powers of consecutive primes starting with 2, except for a(12) = 32760 and a(15) = 98280 (which are missing 11), and a(26) = 942480 (which is missing 13).
a(n) is the smallest number k such that the symmetric representation of sigma(k) has n layers. For more information see A279387. - Omar E. Pol, Dec 16 2016
Row 1 of A253258. - Omar E. Pol, Apr 15 2018
From Hartmut F. W. Hoft, Jun 10 2024: (Start)
All terms a(n) <= 1.75*10^7 have a symmetric representation of sigma that consists of a single part and they are abundant for n > 2. Numbers a(1) = 1, a(2) = 6, and a(4) = 120 are unimodal while numbers a(6) = 840, a(14) = 50400, a(18) = 138600, a(24) = 960960, a(26) = 942480, a(32) = 2827440, a(44) = 8648640 have a single extent of maximum width, but are not unimodal.
Conjecture: The symmetric representation of sigma for every term consists of a single part and it is unimodal only for a(1), a(2), and a(4).
As a consequence, this sequence would be a subsequence of A174973, and all a(n), n > 2, would be abundant. (End)

Examples

			a(3) = 60 since the symmetric representation of sigma(60) = 168 consists of a single region of whose successive widths are 41 1's, 9 2's, 6 3's, 7 2's, 6 3's, 9 2's, and 41 1's.
a(6) = 840 has a single extent of 12 units of width 6 centered around point (583,583) on the diagonal, but is not unimodal. - _Hartmut F. W. Hoft_, Jun 10 2024
		

Crossrefs

Programs

  • Mathematica
    (* function a2[ ] is defined in A249223 *)
    a250070[{j_, k_}, b_] := Module[{i, max, acc={{1, 1}}}, For[i=j, i<=k, i++, max={Max[a2[i]], i}; If[max[[1]]>b && !MemberQ[Transpose[acc][[1]], max[[1]]], AppendTo[acc,max]]]; acc]
    (* returns (argument,result) data pairs since sequence is non-monotonic *)
    Sort[a250070[{1, 1000000}, 1]] (* computed in steps *)

Formula

a(n) = min(k such that A250068(k) = n), n >= 1.

Extensions

a(28)-a(48) from Hartmut F. W. Hoft, Jun 10 2024

A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 106, 107, 109, 113, 116, 118, 122, 124, 127, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 152, 157, 158, 163, 164, 166, 167, 172, 173, 178, 179, 181, 184, 188, 191, 193, 194, 197, 199
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 08 2014

Keywords

Comments

The sequence is the intersection of A239929 (sigma(j) has two parts) and of A241008 (sigma(j) has an even number of parts of width one).
The numbers in the sequence are precisely those defined by the formula for the triangle, see the link. The symmetric representation of sigma(j) has two parts, each part having width one, precisely when j = 2^(k - 1) * p where 2^k <= row(j) < p, p is prime and row(j) = floor((sqrt(8*j + 1) - 1)/2). Therefore, the sequence can be written naturally as a triangle as shown in the Example section.
The symmetric representation of sigma(j) = 2*j - 2 consists of two regions of width 1 that meet on the diagonal precisely when j = 2^(2^m - 1)*(2^(2^m) + 1) where 2^(2^m) + 1 is a Fermat prime (see A019434). This subsequence of numbers j is 3, 10, 136, 32896, 2147516416, ...[?]... (A191363).
The k-th column of the triangle starts in the row whose initial entry is the first prime larger than 2^(k+1) (that sequence of primes is A014210, except for 2).
Observation: at least the first 82 terms coincide with the numbers j with no middle divisors whose largest divisor <= sqrt(j) is a power of 2, or in other words, coincide with the intersection of A071561 and A365406. - Omar E. Pol, Oct 11 2023

Examples

			We show portions of the first eight columns, 0 <= k <= 7, of the triangle.
0    1    2     3     4     5     6     7
3
5    10
7    14
11   22   44
13   26   52
17   34   68    136
19   38   76    152
23   46   92    184
29   58   116   232
31   62   124   248
37   74   148   296   592
41   82   164   328   656
43   86   172   344   688
47   94   188   376   752
53   106  212   424   848
59   118  236   472   944
61   122  244   488   976
67   134  268   536   1072  2144
71   142  284   568   1136  2272
.    .    .     .     .     .
.    .    .     .     .     .
127  254  508   1016  2032  4064
131  262  524   1048  2096  4192  8384
137  274  548   1096  2192  4384  8768
.    .    .     .     .     .     .
.    .    .     .     .     .     .
251  502  1004  2008  4016  8032  16064
257  514  1028  2056  4112  8224  16448  32896
263  526  1052  2104  4208  8416  16832  33664
Since 2^(2^4) + 1 = 65537 is the 6543rd prime, column k = 15 starts with 2^15*(2^(2^16) + 1) = 2147516416 in row 6542 with 65537 in column k = 0.
For an image of the symmetric representations of sigma(m) for all values m <= 137 in the triangle see the link.
The first column is the sequence of odd primes, see A065091.
The second column is the sequence of twice the primes starting with 10, see A001747.
The third column is the sequence of four times the primes starting with 44, see A001749.
For related references also see A033676 (largest divisor of n less than or equal to sqrt(n)).
		

Crossrefs

Programs

  • Mathematica
    (* functions path[] and a237270[ ] are defined in A237270 *)
    atmostOneDiagonalsQ[n_]:=SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], - 1] - path[n - 1], 1]]]
    (* data *)
    Select[Range[200], Length[a237270[#]]==2 && atmostOneDiagonalsQ[#]&]
    (* function for computing triangle in the Example section through row 55 *)
    TableForm[Table[2^k Prime[n], {n, 2, 56}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth->2]

Formula

Formula for the triangle of numbers associated with the sequence:
P(n, k) = 2^k * prime(n) where n >= 2, 0 <= k <= floor(log_2(prime(n)) - 1).

A247687 Numbers m with the property that the symmetric representation of sigma(m) has three parts of width one.

Original entry on oeis.org

9, 25, 49, 50, 98, 121, 169, 242, 289, 338, 361, 484, 529, 578, 676, 722, 841, 961, 1058, 1156, 1369, 1444, 1681, 1682, 1849, 1922, 2116, 2209, 2312, 2738, 2809, 2888, 3362, 3364, 3481, 3698, 3721, 3844, 4232, 4418, 4489, 5041, 5329, 5476, 5618, 6241, 6724, 6728, 6889, 6962, 7396, 7442, 7688, 7921, 8836, 8978, 9409
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2014

Keywords

Comments

The symmetric representation of sigma(m) has 3 regions of width 1 where the two extremal regions each have 2^k - 1 legs and the central region starts with the p-th leg of the associated Dyck path for sigma(m) precisely when m = 2^(k - 1) * p^2 where 2^k < p <= row(m), k >= 1, p >= 3 is prime and row(m) = floor((sqrt(8*m + 1) - 1)/2). Furthermore, the areas of the two outer regions are (2^k - 1)*(p^2 + 1)/2 each so that the area of the central region is (2^k - 1)*p; for a proof see the link.
Since the sequence is defined by a two-parameter expression it can be written naturally as a triangle as shown in the Example section.
A263951 is a subsequence of this sequence containing the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice) are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). - Hartmut F. W. Hoft, Aug 06 2020

Examples

			We show portions of the first eight columns, powers of two 0 <= k <= 7, and 55 rows of the triangle through prime(56) = 263.
p/k     0       1       2       3       4       5       6       7
3       9
5       25      50
7       49      98
11      121     242     484
13      169     338     676
17      289     578     1156    2312
19      361     722     1444    2888
23      529     1058    2116    4232
29      841     1682    3364    6728
31      961     1922    3844    7688
37      1369    2738    5476    10952   21904
41      1681    3362    6724    13448   26896
43      1849    3698    7396    14792   29584
47      2209    4418    8836    17672   35344
53      2809    5618    11236   22472   44944
59      3481    6962    13924   27848   55696
61      3721    7442    14884   29768   59536
67      4489    8978    17956   35912   71824   143648
71      5041    10082   20164   40328   80656   161312
.       .       .       .       .       .       .
.       .       .       .       .       .       .
131     17161   34322   68644   137288  274567  549152  1098304
137     18769   37538   75076   150152  300304  600608  1201216
.       .       .       .       .       .       .       .
.       .       .       .       .       .       .       .
257     66049   132098  264196  528392  1056784 2113568 4227136 8454272
263     69169   138338  276676  553352  1106704 2213408 4426816 8853632
Number 4 is not in this sequence since the symmetric representation of sigma(4) consists of a single region. Column k=0 contains the squares of primes (A001248(n), n>=2), column k=1 contains double the squares of primes (A079704(n), n>=2) and column k=2 contains four times the squares of primes (A069262(n), n>=5).
		

Crossrefs

Programs

  • Mathematica
    (* path[n] and a237270[n] are defined in A237270 *)
    atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]]
    (* data *)
    Select[Range[10000], atmostOneDiagonalsQ[#] && Length[a237270[#]]==3 &]
    (* expression for the triangle in the Example section *)
    TableForm[Table[2^k Prime[n]^2, {n, 2, 57}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth -> 2, TableHeadings -> {Map[Prime, Range[2, 57]], Range[0, Floor[Log[2, Prime[57] - 1]]]}]

Formula

As an irregular triangle, T(n, k) = 2^k * prime(n)^2 where n >= 2 and 0 <= k <= floor(log_2(prime(n)) - 1).

A279391 Irregular triangle read by rows in which row n lists the subparts of the successive layers of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 11, 1, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 23, 5, 7, 7, 12, 12, 8, 7, 8, 1, 31, 9, 9, 35, 2, 2, 10, 10, 39, 3, 11, 5, 5, 11, 18, 18, 12, 12, 47, 13, 13, 5, 13, 21, 21, 14, 6, 6, 14, 55, 1, 15, 15, 59, 3, 7, 3, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 9, 18, 3, 71, 10, 10, 19, 19, 30, 30
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2016

Keywords

Comments

Note that the terms in the n-th row are the same as the terms in the n-th row of triangle A280851, but in some rows the terms appear in distinct order. First differs from A280851 at a(28) = T(15,3). - Omar E. Pol, Apr 24 2018
Row n in the triangle is a sequence of A250068(n) symmetric sections, each section consisting of the sizes of the subparts on that level in the symmetric representation of sigma of n - from the top down in the images below or left to right as drawn in A237593. - Hartmut F. W. Hoft, Sep 05 2021

Examples

			Triangle begins (first 15 rows):
   [1];
   [3];
   [2, 2];
   [7];
   [3, 3];
   [11], [1];
   [4, 4];
   [15];
   [5, 3, 5];
   [9, 9];
   [6, 6];
   [23], [5];
   [7, 7];
   [12, 12];
   [8, 7, 8], [1];
  ...
For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
.                          _                                    _
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                    _ _ _| |                             _ _ _| |
.                  _|    _ _|                           _|  _ _ _|
.                _|     |                             _|  _| |
.               |      _|                            |  _|  _|
.               |  _ _|                              | |_ _|
.    _ _ _ _ _ _| |    28                 _ _ _ _ _ _| |    5
.   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
.                                                       23
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(12)        of the symmetric representation
.   has only one part which            of sigma(12) into layers of
.   contains 28 cells, so              width 1 we can see two "subparts"
.   the 12th row of the                that contain 23 and 5 cells
.   triangle A237270 is [28].          respectively, so the 12th row of
.                                      this triangle is [23], [5].
.
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3:
.                                _                                  _
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                          _ _ _|_|                           _ _ _|_|
.                      _ _| |      8                      _ _| |      8
.                     |    _|                            |  _ _|
.                    _|  _|                             _| |_|
.                   |_ _|  8                           |_ _|  1
.                   |                                  |    7
.    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                    8                                  8
.
.   Figure 3. The symmetric            Figure 4. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four "subparts".
.   8 cells, so the 15th row of        The first layer has three subparts:
.   triangle A237270 is [8, 8, 8].     8, 7, 8. The second layer has
.                                      only one subpart of size 1, so
.                                      the 15th row of this triangle is
.                                      [8, 7, 8], [1].
.
The smallest even number with 3 levels is 60; its row of subparts is: [119], [37], [6, 6]. The smallest odd number with 3 levels is 315; its row of subparts is:  [158, 207, 158], [11, 26, 5, 9, 5, 26, 11], [4, 4]. - _Hartmut F. W. Hoft_, Sep 05 2021
		

Crossrefs

The length of row n equals A001227(n).
If n is odd the length of row n equals A000005(n).
Row sums give A000203.
For the definition of "subparts" see A279387.
For the triangle of sums of subparts see A279388.

Programs

  • Mathematica
    (* support functions are defined in aA237593 and A262045 *)
    subP[level_] := Module[{s=Map[Apply[Plus, #]&, Select[level, First[#]!=0&]]}, If[OddQ[Length[s]], s[[(Length[s]+1)/2]]-=1]; s]
    a279391[n_] := Module[{widL=a262045[n], lenL=a237593[n], srs, subs}, srs=Transpose[Map[PadRight[If[widL[[#]]>0, Table[1, widL[[#]]], {0}], Max[widL]]&, Range[Length[lenL]]]]; subs=Map[SplitBy[lenL srs[[#]], #!=0&]&, Range[Max[widL]]]; Flatten[Map[subP, subs]]]
    Flatten[Map[a279391, Range[38]]] (* Hartmut F. W. Hoft, Sep 05 2021 *)
Showing 1-10 of 26 results. Next