A340556 E2(n, k), the second-order Eulerian numbers with E2(0, k) = δ_{0, k}. Triangle read by rows, E2(n, k) for 0 <= k <= n.
1, 0, 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 22, 58, 24, 0, 1, 52, 328, 444, 120, 0, 1, 114, 1452, 4400, 3708, 720, 0, 1, 240, 5610, 32120, 58140, 33984, 5040, 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 2; [3] 0, 1, 8, 6; [4] 0, 1, 22, 58, 24; [5] 0, 1, 52, 328, 444, 120; [6] 0, 1, 114, 1452, 4400, 3708, 720; [7] 0, 1, 240, 5610, 32120, 58140, 33984, 5040; [8] 0, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320; [9] 0, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880. To illustrate the generating function for row 3: The expansion of (1 - x)^7*(x*exp(-x) + 16*x^2*exp(-x)^2 + (243*x^3*exp(-x)^3)/2) gives the polynomial x + 8*x^2 + 6*x^3. The coefficients of this polynomial give row 3. . Stirling permutations of order 3 with exactly k descents: (When counting the descents one may assume an invisible '0' appended to the permutations.) T[3, k=0]: T[3, k=1]: 112233; T[3, k=2]: 331122; 223311; 221133; 133122; 122331; 122133; 113322; 112332; T[3, k=3]: 332211; 331221; 233211; 221331; 133221; 123321.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
Links
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3), 2015.
- Kenny Barrese, Jennifer Elder, Pamela E. Harris, and Anthony Simpson, Enumerating Flat Fubini Rankings, arXiv:2504.06466 [math.CO], 2025. Conjecture 4.4. p. 14.
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.10.1), Thesis, Brandeis Univ., Aug. 2008, p. 58.
- Sergi Elizalde, Descents on quasi-Stirling permutations, arXiv:2002.00985 [math.CO], 2020.
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24, 24-33, 1978.
- Svante Janson, Plane recursive trees, Stirling permutations and an urn model, Fifth Colloquium on Mathematics and Computer Science, 541-547, Discrete Math. Theor. Comput. Sci. Proc., AI, 2008.
- Peter Luschny, A companion to A340556, A SageMath-Jupyter notebook, Feb. 2021.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- John Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
- G. Rzadkowski and M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016.
Crossrefs
Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and this indexing, extending the definition of Gessel and Stanley. (A008517 is the main entry of the numbers.) The corresponding triangles of the first-order Eulerian numbers are A008292, A173018, and A123125.
Row reversed: A163936 (with offset = 0).
Programs
-
Maple
# Using the recurrence: E2 := proc(n, k) option remember; if k = 0 and n = 0 then return 1 fi; if n < 0 then return 0 fi; E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) end: seq(seq(E2(n, k), k = 0..n), n = 0..9); # Using the row generating function: E2egf := n -> (1-x)^(2*n+1)*add(k^(n+k)/k!*(x*exp(-x))^k, k=0..n); T := (n, k) -> coeftayl(E2egf(n), x=0, k): seq(print(seq(T(n, j),j=0..n)), n=0..7); # Using the built-in function: E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)): # Using the compositional inverse (series reversion): E2triangle := proc(N) local r, s, C; Order := N + 2; s := solve(y = series(x - t*(exp(x) - 1), x), x): r := n -> -n!*(t - 1)^(2*n - 1)*coeff(s, y, n); C := [seq(expand(r(n)), n = 1..N)]; seq(print(seq(coeff(C[n+1], t, k), k = 0..n)), n = 0..N-1) end: E2triangle(10);
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Via row polynomials: *) E2poly[n_] := If[n == 0, 1, Expand[Simplify[x (x - 1)^(2 n) D[((1 - x)^(1 - 2 n) E2poly[n - 1]), x]]]]; Table[CoefficientList[E2poly[n], x], {n, 0, 9}] // Flatten (* Series reversion *) Revert[gf_, len_] := Module[{S = InverseSeries[Series[gf, {x, 0, len + 1}], x]}, Table[CoefficientList[(n + 1)! (1 - t)^(2 n + 1) Coefficient[S, x, n + 1], t], {n, 0, len}] // Flatten]; Revert[x + t - t Exp[x], 6]
-
PARI
E2poly(n) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1))); { for(n = 0, 9, print(Vecrev(E2poly(n)))) }
-
PARI
T(n, k) = sum(j=0, n-k, (-1)^(n-j)*binomial(2*n+1, j)*stirling(2*n-k-j+1, n-k-j+1, 1)); \\ Michel Marcus, Feb 11 2021
-
SageMath
# See also link to notebook. @cached_function def E2(n, k): if n < 0: return 0 if k == 0: return k^n return k * E2(n - 1, k) + (2*n - k) * E2(n - 1, k - 1) # Peter Luschny, Mar 08 2025
Formula
E2(n, k) = E2(n-1, k)*k + E2(n-1, k-1)*(2*n - k) for n > 0 and 0 <= k <= n, and E2(0, 0) = 1; in all other cases E(n, k) = 0.
E2(n, k) = Sum_{j=0..n-k}(-1)^(n-j)*binomial(2*n+1, j)*Stirling1(2*n-k-j+1, n-k-j+1).
E2(n, k) = Sum_{j=0..k}(-1)^(k-j)*binomial(2*n + 1, k - j)*Stirling2(n + j, j).
Stirling1(x, x - n) = (-1)^n*Sum_{k=0..n} E2(n, k)*binomial(x + k - 1, 2*n).
Stirling2(x, x - n) = Sum_{k=0..n} E2(n, k)*binomial(x + n - k, 2*n).
E2poly(n, x) = Sum_{k=0..n} E2(n, k)*x^k, as row polynomials.
E2poly(n, x) = x*(x-1)^(2*n)*d_{x}((1-x)^(1-2*n)*E2poly(n-1)) for n>=1 and E2poly(0)=1.
E2poly(n, x) = (1 - x)^(2*n + 1)*Sum_{k=0..n}(k^(n + k)/k!)*(x*exp(-x))^k.
W(n, k) = [x^k] (1+x)^n*E2poly(n, x/(1 + x)) are the Ward numbers A269939.
E2(n, k) = [x^k] (1-x)^n*Wpoly(n, x/(1 - x)); Wpoly(n, x) = Sum_{k=0..n}W(n, k)*x^k.
W(n, k) = Sum_{j=0..k} E2(n, j)*binomial(n - j, n - k).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*W(n, j)*binomial(n - j, k - j).
The compositional inverse with respect to x of x - t*(exp(x) - 1) (see B. Drake):
T(n, k) = [t^k](n+1)!*(1-t)^(2*n+1)*[x^(n+1)] InverseSeries(x - t*(exp(x)-1), x).
AS1(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, j+1), where AS1(n, k) are the associated Stirling numbers of the first kind (A008306, A106828).
E2(n, k) = Sum_{j=0..n-k+1} (-1)^(n-k-j+1)*AS1(n+j, j)*binomial(n-j, n-k-j+1), for n >= 1.
AS2(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) for n >=1, where AS2(n, k) are the associated Stirling numbers of the second kind (A008299, A137375).
E2(n, k) = Sum_{j=0..k} (-1)^(k-j)*AS2(n + j, j)*binomial(n - j, k - j).
Comments