cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A112487 a(n) = Sum_{k=0..n} E2(n, k)*2^k, where E2(n, k) are the second-order Eulerian numbers A340556.

Original entry on oeis.org

1, 2, 10, 82, 938, 13778, 247210, 5240338, 128149802, 3551246162, 109979486890, 3764281873042, 141104799067178, 5749087305575378, 252969604725106090, 11955367835505775378, 603967991604199335722, 32479636694930586142802, 1852497140997527094395050
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Previous name: Row sums of triangle A112486.

Crossrefs

Programs

  • Maple
    A112487 := proc(n)
        add(A112486(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Dec 19 2013
    seq(op(k, convert(asympt(GAMMA(n, 2*n)*exp(2*n)/(2*n)^n, n, 20), polynom))*(-1)^(k+1)*n^k, k = 1..19); # Maple 2017, Vaclav Kotesovec, Aug 14 2017
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1));
    a := n -> add(E2(n, k)*2^k, k=0..n):
    seq(a(n), n=0..17); # Peter Luschny, Feb 13 2021
  • Mathematica
    a[n_] := (n-1)!*(Sum[ Binomial[n+k-1, n-1]* Sum[(-1)^(n+j-1)*Binomial[k, j]* Sum[(Binomial[j, l]*(j-l)!*2^(j-l)*(-1)^l*StirlingS2[n-l+j-1, j-l])/(n-l+j-1)!, {l, 0, j}], {j, 0, k}], {k, 0, n-1}]); Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], If[n < 0, 0, k T[n - 1, k] + (2 n - k) T[n - 1, k - 1]]]; a[n_] := Sum[T[n, k] 2^k, {k, 0, n}];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Feb 13 2021 *)
  • Maxima
    a(n):=n!*(sum(binomial(n+k, n)*sum((-1)^(n+j)*binomial(k, j)*sum((binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*stirling2(n-l+j, j-l))/(n-l+j)!, l, 0, j), j, 0, k), k, 0, n)); /* Vladimir Kruchinin, Feb 14 2012 */
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(intformal(A+A^2)+x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jun 30 2009
    

Formula

a(n) = Sum_{m=0..n} A112486(n, m), n >= 0.
a(n) = 2*A032188(n+1), n > 0. - Vladeta Jovovic, Jul 11 2007
From Paul D. Hanna, Jun 30 2009: (Start)
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^3.
E.g.f. A(x) satisfies: A(x) = exp( Integral[A(x) + A(x)^2]dx ) with A(0)=1. (End)
E.g.f. A(x) satisfies: A(x) = 2*exp(A(x)) - (2+x), where A(x) = Sum_{n>=0} a(n)*x^(n+1)/(n+1)! (the e.g.f. when offset=1). - Paul D. Hanna, Sep 23 2011
From Tom Copeland, Oct 05 2011: (Start)
With c(0)= 0 and c(n+1)= (-1)^n a(n) for n>=0, c(n)=(-1)^(n+1) PW(n,-2) with PW the Ward polynomials A134991. E.g.f. for the c(n) is A(x) = -(x+2)-LW{-2 exp[-(x+2)]}, where LW(x) is a suitable branch of the Lambert W Fct. (see A135338).
The compositional inverse is B(x) = x + 2(exp(x) - x - 1). These results are a special case of A134685 with u(x)=B(x), i.e., u_1=1 and (u_n)=2 for n>0.
Let h(x) = 1/(dB(x)/dx) = 1/[1+2(exp(x)-1)], then c(n) is given by (h(x)*d/dx)^n x, evaluated at x=0, i.e., A(x) = exp(x*h(u)*d/du) u, evaluated at u=0. Also, dA(x)/dx = h(A(x)).
The e.g.f. A(x) = -v * Sum_(j>=1) D(j-1,u) (-z)^j/ j! where u=-(x+2), v=1+u, z=(1+v)/(v^2) and D(j-1,u) are the polynomials of A042977. (End)
a(n) = n!*Sum_{k=0..n} binomial(n+k, n)*Sum_{j=0..k} (-1)^(n+j)*binomial(k, j)*Sum_{l=0..j} binomial(j, l)*(j-l)!*2^(j-l)*(-1)^l*Stirling2(n-l+j, j-l)/(n-l+j)!. - Vladimir Kruchinin, Feb 14 2012
G.f.: 1/Q(0), where Q(k)= 1 + k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ n^n / (exp(n) * (1-log(2))^(n+1/2)). - Vaclav Kotesovec, Aug 14 2017
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 02 2020

Extensions

New name from Peter Luschny, Feb 13 2021

A341106 a(n) = 2^n*E2poly(n, -1/2), where E2poly(n, x) = Sum_{k=0..n} A340556(n, k)*x^k, are the second-order Eulerian polynomials.

Original entry on oeis.org

1, -1, 0, 6, -12, -144, 1080, 5184, -127008, 95904, 19077120, -154929024, -3210337152, 70284900096, 391453171200, -30354545511936, 153830450875392, 13189520200402944, -244127117929789440, -5109022268709986304, 237988748560571301888, 571783124036801765376
Offset: 0

Views

Author

Peter Luschny, Feb 13 2021

Keywords

Crossrefs

Cf. A340556.

Programs

  • Maple
    E2poly := (n, x) -> add(A340556(n, k)*x^k, k = 0..n):
    seq(2^n*E2poly(n, -1/2), n = 0..21);
    # By series reversion:
    serrev := proc(gf, len) series(gf, y, len);
    gfun:-seriestoseries(%, 'revogf'); gfun:-seriestolist(%);
    gfun:-listtolist(%, 'Laplace'); subsop(1 = NULL, %) end:
    gf := (6*y + exp(3*y) - 1)/9: serrev(gf, 23);
  • Mathematica
    R := 22; f[y_] := (6y + Exp[3y] - 1)/9;
    S := InverseSeries[Series[f[y], {y, 0, R}], x];
    Drop[CoefficientList[S, x] Table[n!, {n, 0, R}], 1]

A341111 T(n, k) = [x^k] M(n)*Sum_{k=0..n} E2(n, k)*binomial(-x + n - k, 2*n), where E2 are the second-order Eulerian numbers A340556 and M(n) are the Minkowski numbers A053657. Triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= 2*n+1.

Original entry on oeis.org

1, 0, 1, 1, 0, 10, 21, 14, 3, 0, 36, 96, 97, 47, 11, 1, 0, 12048, 36740, 45420, 29855, 11352, 2510, 300, 15, 0, 91200, 304480, 427348, 334620, 162255, 50787, 10302, 1310, 95, 3, 0, 109941120, 392583744, 603023624, 531477324, 300731214, 115291701, 30675678, 5682033, 719866, 59535, 2898, 63
Offset: 0

Views

Author

Peter Luschny, Feb 05 2021

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0, 1,     1;
[2] 0, 10,    21,     14,     3;
[3] 0, 36,    96,     97,     47,     11,     1;
[4] 0, 12048, 36740,  45420,  29855,  11352,  2510,  300,   15;
[5] 0, 91200, 304480, 427348, 334620, 162255, 50787, 10302, 1310, 95, 3.
		

Crossrefs

Programs

  • Maple
    E2 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
    CoeffList := p -> [op(PolynomialTools:-CoefficientList(p, x))]:
    mser := series((y/(exp(y)-1))^x, y, 29): m := n -> denom(coeff(mser, y, n)):
    poly := n -> expand(m(n)*add(E2(n, k)*binomial(-x+n-k, 2*n), k = 0..n)):
    for n from 0 to 6 do CoeffList(poly(n)) od;
  • PARI
    M(n) = prod(i=1, #factor(n!)~, prime(i)^sum(k=0, #binary(n), floor((n-1)/((prime(i)-1)*prime(i)^k)))) \\ from A053657
    rows_upto(n) = my(v1, v2); v1 = vector(n, i, 0); v2 = vector(n+1, i, 0); v2[1] = 1; for(i=1, n, v1[i] = (i+x)*(i+x-1)/2*v2[i]; for(j=1, i-1, v1[j] *= (i-j)*(i+x)/(i-j+2)); v2[i+1] = vecsum(v1)/i); v2 = vector(n+1, i, M(i)*Vecrev(v2[i])) \\ Mikhail Kurkov, Aug 27 2025

A367369 a(n) = A340556(2*n, n), the central terms of the second order Eulerian numbers.

Original entry on oeis.org

1, 1, 22, 1452, 195800, 44765000, 15548960784, 7634832149392, 5036317938475648, 4297211671488276816, 4605775111899791292320, 6058134671618508819536768, 9595073255473201184093573376, 18012849924775292436074080925056, 39551575929026035832580350736305920
Offset: 0

Views

Author

Peter Luschny, Nov 16 2023

Keywords

Crossrefs

Indexing the second-order Eulerian numbers comes in three flavors: A008517 (following Riordan and Comtet), A201637 (following Graham, Knuth, and Patashnik) and indexing like in A340556 using the definition of Gessel and Stanley.

Programs

  • Maple
    A340556 := (n, k) -> `if`(k=0, k^n, combinat:-eulerian2(n, k-1)):
    seq(A340556(2*n, n), n = 0..14);
  • Mathematica
    (* Using function T[n_, k_] from A340556. *)
    Table[T[2 k, k], {k, 0, 14}] (* Shenghui Yang, Mar 07 2025 *)
  • SageMath
    # Using function E2(n, k) from A340556.
    print([E2(2*n, n) for n in (0..14)])  # Peter Luschny, Mar 07 2025

A000169 Number of labeled rooted trees with n nodes: n^(n-1).

Original entry on oeis.org

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968, 104127350297911241532841, 5242880000000000000000000
Offset: 1

Views

Author

Keywords

Comments

Also the number of connected transitive subtree acyclic digraphs on n vertices. - Robert Castelo, Jan 06 2001
For any given integer k, a(n) is also the number of functions from {1,2,...,n} to {1,2,...,n} such that the sum of the function values is k mod n. - Sharon Sela (sharonsela(AT)hotmail.com), Feb 16 2002
The n-th term of a geometric progression with first term 1 and common ratio n: a(1) = 1 -> 1,1,1,1,... a(2) = 2 -> 1,2,... a(3) = 9 -> 1,3,9,... a(4) = 64 -> 1,4,16,64,... - Amarnath Murthy, Mar 25 2004
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n+1) is also the number of partial functions on n labeled objects. - Franklin T. Adams-Watters, Dec 25 2006
In other words, if A is a finite set of size n-1, then a(n) is the number of binary relations on A that are also functions. Note that a(n) = Sum_{k=0..n-1} binomial(n-1,k)*(n-1)^k = n^(n-1), where binomial(n-1,k) is the number of ways to select a domain D of size k from A and (n-1)^k is the number of functions from D to A. - Dennis P. Walsh, Apr 21 2011
This is the fourth member of a set of which the other members are the symmetric group, full transformation semigroup, and symmetric inverse semigroup. For the first three, see A000142, A000312, A002720. - Peter J. Cameron, Nov 03 2024.
More generally, consider the class of sequences of the form a(n) = (n*c(1)*...*c(i))^(n-1). This sequence has c(1)=1. A052746 has a(n) = (2*n)^(n-1), A052756 has a(n) = (3*n)^(n-1), A052764 has a(n) = (4*n)^(n-1), A052789 has a(n) = (5*n)^(n-1) for n>0. These sequences have a combinatorial structure like simple grammars. - Ctibor O. Zizka, Feb 23 2008
a(n) is equal to the logarithmic transform of the sequence b(n) = n^(n-2) starting at b(2). - Kevin Hu (10thsymphony(AT)gmail.com), Aug 23 2010
Also, number of labeled connected multigraphs of order n without cycles except one loop. See link below to have a picture showing the bijection between rooted trees and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
a(n) is also the number of functions f:{1,2,...,n} -> {1,2,...,n} such that f(1) = 1.
For a signed version of A000169 arising from the Vandermonde determinant of (1,1/2,...,1/n), see the Mathematica section. - Clark Kimberling, Jan 02 2012
Numerator of (1+1/(n-1))^(n-1) for n>1. - Jean-François Alcover, Jan 14 2013
Right edge of triangle A075513. - Michel Marcus, May 17 2013
a(n+1) is the number of n x n binary matrices with no more than a single one in each row. Partitioning the set of such matrices by the number k of rows with a one, we obtain a(n+1) = Sum_{k=0..n} binomial(n,k)*n^k = (n+1)^n. - Dennis P. Walsh, May 27 2014
Central terms of triangle A051129: a(n) = A051129(2*n-1,n). - Reinhard Zumkeller, Sep 14 2014
a(n) is the row sum of the n-th rows of A248120 and A055302, so it enumerates the monomials in the expansion of [x(1) + x(2) + ... + x(n)]^(n-1). - Tom Copeland, Jul 17 2015
For any given integer k, a(n) is the number of sums x_1 + ... + x_m = k (mod n) such that: x_1, ..., x_m are nonnegative integers less than n, the order of the summands does not matter, and each integer appears fewer than n times as a summand. - Carlo Sanna, Oct 04 2015
a(n) is the number of words of length n-1 over an alphabet of n letters. - Joerg Arndt, Oct 07 2015
a(n) is the number of parking functions whose largest element is n and length is n. For example, a(3) = 9 because there are nine such parking functions, namely (1,2,3), (1,3,2), (2,3,1), (2,1,3), (3,1,2), (3,2,1), (1,1,3), (1,3,1), (3,1,1). - Ran Pan, Nov 15 2015
Consider the following problem: n^2 cells are arranged in a square array. A step can be defined as going from one cell to the one directly above it, to the right of it or under it. A step above cannot be followed by a step below and vice versa. Once the last column of the square array is reached, you can only take steps down. a(n) is the number of possible paths (i.e., sequences of steps) from the cell on the bottom left to the cell on the bottom right. - Nicolas Nagel, Oct 13 2016
The rationals c(n) = a(n+1)/a(n), n >= 1, appear in the proof of G. Pólya's "elementary, but not too elementary, theorem": Sum_{n>=1} (Product_{k=1..n} a_k)^(1/n) < exp(1)*Sum_{n>=1} a_n, for n >= 1, with the sequence {a_k}{k>=1} of nonnegative terms, not all equal to 0. - _Wolfdieter Lang, Mar 16 2018
Coefficients of the generating series for the preLie operadic algebra. Cf. p. 417 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
a(n)/2^(n-1) is the square of the determinant of the n X n matrix M_n with elements m(j,k) = cos(Pi*j*k/n). See Zhi-Wei Sun, Petrov link. - Hugo Pfoertner, Sep 19 2021
a(n) is the determinant of the n X n matrix P_n such that, when indexed [0, n), P(0, j) = 1, P(i <= j) = i, and P(i > j) = i-n. - C.S. Elder, Mar 11 2024

Examples

			For n=3, a(3)=9 because there are exactly 9 binary relations on A={1, 2} that are functions, namely: {}, {(1,1)}, {(1,2)}, {(2,1)}, {(2,2)}, {(1,1),(2,1)}, {(1,1),(2,2)}, {(1,2),(2,1)} and {(1,2),(2,2)}. - _Dennis P. Walsh_, Apr 21 2011
G.f. = x + 2*x^2 + 9*x^3 + 64*x^4 + 625*x^5 + 7776*x^6 + 117649*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 169.
  • Jonathan L. Gross and Jay Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
  • Hannes Heikinheimo, Heikki Mannila and Jouni K. Seppnen, Finding Trees from Unordered 01 Data, in Knowledge Discovery in Databases: PKDD 2006, Lecture Notes in Computer Science, Volume 4213/2006, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 63.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2, and p. 37, (5.52).

Crossrefs

Programs

  • Haskell
    a000169 n = n ^ (n - 1)  -- Reinhard Zumkeller, Sep 14 2014
    
  • Magma
    [n^(n-1): n in [1..20]]; // Vincenzo Librandi, Jul 17 2015
    
  • Maple
    A000169 := n -> n^(n-1);
    # second program:
    spec := [A, {A=Prod(Z, Set(A))}, labeled]; [seq(combstruct[count](spec, size=n), n=1..20)];
    # third program:
    A000169 := n -> add((-1)^(n+k-1)*pochhammer(n, k)*Stirling2(n-1, k), k = 0..n-1):
    seq(A000169(n), n = 1 .. 23);  # Mélika Tebni, May 07 2023
  • Mathematica
    Table[n^(n - 1), {n, 1, 20}] (* Stefan Steinerberger, Apr 01 2006 *)
    Range[0, 18]! CoefficientList[ Series[ -LambertW[-x], {x, 0, 18}], x] // Rest (* Robert G. Wilson v, updated by Jean-François Alcover, Oct 14 2019 *)
    (* Next, a signed version A000169 from the Vandermonde determinant of (1,1/2,...,1/n) *)
    f[j_] := 1/j; z = 12;
    v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
    Table[v[n], {n, 1, z}]
    1/%  (* A203421 *)
    Table[v[n]/v[n + 1], {n, 1, z - 1}]  (* A000169 signed *)
    (* Clark Kimberling, Jan 02 2012 *)
    a[n_]:=Det[Table[If[i==0,1,If[i<=j,i,i-n]],{i,0,n-1},{j,0,n-1}]]; Array[a,20] (* Stefano Spezia, Mar 12 2024 *)
  • MuPAD
    n^(n-1) $ n=1..20 /* Zerinvary Lajos, Apr 01 2007 */
    
  • PARI
    a(n) = n^(n-1)
    
  • Python
    def a(n): return n**(n-1)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Sep 19 2021
    
  • Python
    from sympy import Matrix
    def P(n): return [[ (i-n if i > j else i) + (i == 0) for j in range(n) ] for i in range(n)]
    print(*(Matrix(P(n)).det() for n in range(1, 21)), sep=', ') # C.S. Elder, Mar 12 2024

Formula

The e.g.f. T(x) = Sum_{n>=1} n^(n-1)*x^n/n! satisfies T(x) = x*exp(T(x)), so T(x) is the functional inverse (series reversion) of x*exp(-x).
Also T(x) = -LambertW(-x) where W(x) is the principal branch of Lambert's function.
T(x) is sometimes called Euler's tree function.
a(n) = A000312(n-1)*A128434(n,1)/A128433(n,1). - Reinhard Zumkeller, Mar 03 2007
E.g.f.: LambertW(x)=x*G(0); G(k) = 1 - x*((2*k+2)^(2*k))/(((2*k+1)^(2*k)) - x*((2*k+1)^(2*k))*((2*k+3)^(2*k+1))/(x*((2*k+3)^(2*k+1)) - ((2*k+2)^(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 30 2011
a(n) = Sum_{i=1..n} binomial(n-1,i-1)*i^(i-2)*(n-i)^(n-i). - Dmitry Kruchinin, Oct 28 2013
Limit_{n->oo} a(n)/A000312(n-1) = e. - Daniel Suteu, Jul 23 2016
From Amiram Eldar, Nov 20 2020: (Start)
Sum_{n>=1} 1/a(n) = A098686.
Sum_{n>=1} (-1)^(n+1)/a(n) = A262974. (End)
a(n) = Sum_{k=0..n-1} (-1)^(n+k-1)*Pochhammer(n, k)*Stirling2(n-1, k). - Mélika Tebni, May 07 2023
In terms of Eulerian numbers A340556(n,k) of the second order Sum_{m>=1} m^(m+n) z^m/m! = 1/(1-T(z))^(2n+1) * Sum_{k=0..n} A2(n,k) T(z)^k. - Marko Riedel, Jan 10 2024

A008517 Second-order Eulerian triangle T(n,k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 8, 6, 1, 22, 58, 24, 1, 52, 328, 444, 120, 1, 114, 1452, 4400, 3708, 720, 1, 240, 5610, 32120, 58140, 33984, 5040, 1, 494, 19950, 195800, 644020, 785304, 341136, 40320, 1, 1004, 67260, 1062500, 5765500, 12440064, 11026296, 3733920, 362880
Offset: 1

Views

Author

Keywords

Comments

Second-order Eulerian numbers <> = T(n,k+1) count the permutations of the multiset {1,1,2,2,...,n,n} with k ascents with the restriction that for all m, all integers between the two copies of m are less than m. In particular, the two 1s are always next to each other.
When seen as coefficients of polynomials with descending exponents, evaluations are in A000311 (x=2) and A001662 (x=-1).
The row reversed triangle is A112007. There one can find comments on the o.g.f.s for the diagonals of the unsigned Stirling1 triangle |A008275|.
Stirling2(n,n-k) = Sum_{m=0..k-1} T(k,m+1)*binomial(n+k-1+m, 2*k), k>=1. See the Graham et al. reference p. 271 eq. (6.43).
This triangle is the coefficient triangle of the numerator polynomials appearing in the o.g.f. for the k-th diagonal (k >= 1) of the Stirling2 triangle A048993.
The o.g.f. for column k satisfies the recurrence G(k,x) = x*(2*x*(d/dx)G(k-1,x) + (2-k)*G(k-1,x))/(1-k*x), k >= 2, with G(1,x) = 1/(1-x). - Wolfdieter Lang, Oct 14 2005
This triangle is in some sense generated by the differential equation y' = 1 - 2/(1+x+y). (This is the differential equation satisfied by the function defined implicitly as x+y=exp(x-y).) If we take y = a(0) + a(1)x + a(2)x^2 + a(3)x^3 + ... and assume a(0)=c then all the a's may be calculated formally in terms of c and we have a(1) = (c-1)/(c+1) and, for n > 1, a(n) = 2^n/n! (1+c)^(1-2n)( T(n,1)c - T(n,2)c^2 + T(n,3)c^3 - ... + (-1)^(n-1) T(n,n)c^n ). - Moshe Shmuel Newman, Aug 08 2007
From the recurrence relation, the generating function F(x,y) := 1 + Sum_{n>=1, 1<=k<=n} [T(n,k)x^n/n!*y^k] satisfies the partial differential equation F = (1/y-2x)F_x + (y-1)F_y, with (non-elementary) solution F(x,y) = (1-y)/(1-Phi(w)) where w = y*exp(x(y-1)^2-y) and Phi(x) is defined by Phi(x) = x*exp(Phi(x)). By Lagrange inversion (see Wilf's book "generatingfunctionology", page 168, Example 1), Phi(x) = Sum_{n>=1} n^(n-1)*x^n/n!. Thus Phi(x) can alternatively be described as the e.g.f. for rooted labeled trees on n vertices A000169. - David Callan, Jul 25 2008
A method for solving PDEs such as the one above for F(x,y) is described in the Klazar reference (see pages 207-208). In his case, the auxiliary ODE dy/dx = b(x,y)/a(x,y) is exact; in this case it is not exact but has an integrating factor depending on y alone, namely y-1. The e.g.f. for the row sums A001147 is 1/sqrt(1-2*x) and the demonstration that F(x,1) = 1/sqrt(1-2*x) is interesting: two applications of l'Hopital's rule to lim_{y->1}F(x,y) yield F(x,1) = 1/(1-2x)*1/F(x,1). So l'Hopital's rule doesn't directly yield F(x,1) but rather an equation to be solved for F(x,1)!. - David Callan, Jul 25 2008
From Tom Copeland, Oct 12 2008; May 19 2010: (Start)
Let P(0,t)= 0, P(1,t)= 1, P(2,t)= t, P(3,t)= t + 2 t^2, P(4,t)= t + 8 t^2 + 6 t^3, ... be the row polynomials of the present array, then
exp(x*P(.,t)) = ( u + Tree(t*exp(u)) ) / (1-t) = WD(x*(1-t), t/(1-t)) / (1-t)
where u = x*(1-t)^2 - t, Tree(x) is the e.g.f. of A000169 and WD(x,t) is the e.g.f. for A134991, relating the Ward and 2-Eulerian polynomials by a simple transformation.
Note also apparently P(4,t) / (1-t)^3 = Ward Poly(4, t/(1-t)) = essentially an e.g.f. for A093500.
The compositional inverse of f(x,t) = exp(P(.,t)*x) about x=0 is
g(x,t) = ( x - (t/(1-t)^2)*(exp(x*(1-t))-x*(1-t)-1) )
= x - t*x^2/2! - t*(1-t)*x^3/3! - t*(1-t)^2*x^4/4! - t*(1-t)^3*x^5/5! - ... .
Can apply A134685 to these coefficients to generate f(x,t). (End)
Triangle A163936 is similar to the one given above except for an extra right hand column [1, 0, 0, 0, ... ] and that its row order is reversed. - Johannes W. Meijer, Oct 16 2009
From Tom Copeland, Sep 04 2011: (Start)
Let h(x,t) = 1/(1-(t/(1-t))*(exp(x*(1-t))-1)), an e.g.f. in x for row polynomials in t of A008292, then the n-th row polynomial in t of the table A008517 is given by ((h(x,t)*D_x)^(n+1))x with the derivative evaluated at x=0.
Also, df(x,t)/dx = h(f(x,t),t) where f(x,t) is an e.g.f. in x of the row polynomials in t of A008517, i.e., exp(x*P(.,t)) in Copeland's 2008 comment. (End)
The rows are the h-vectors of A134991. - Tom Copeland, Oct 03 2011
Hilbert series of the pre-WDVV ring, thus h-vectors of the Whitehouse simplicial complex (cf. Readdy, Table 1). - Tom Copeland, Sep 20 2014
Arises in Buckholtz's analysis of the error term in the series for exp(nz). - N. J. A. Sloane, Jul 05 2016

Examples

			Triangle begins:
  1;
  1,   2;
  1,   8,   6;
  1,  22,  58,  24;
  1,  52, 328, 444, 120; ...
Row 3: There are three plane increasing 0-1-2-3 trees on 3 vertices. The number of colors are shown to the right of a vertex.
.
    1o (2*t+1)         1o t*(t+2)      1o t*(t+2)
     |                 / \             / \
     |                /   \           /   \
    2o (2*t+1)      2o    3o        3o    2o
     |
     |
    3o
.
The total number of trees is (2*t+1)^2 + t*(t+2) + t*(t+2) = 1 + 8*t + 6*t^2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. [with offsets [0,0]: see A201637]

Crossrefs

Columns include A005803, A004301, A006260.
Right-hand columns include A000142, A002538, A002539.
Row sums are A001147.
For a (0,0) based version as used in 'Concrete Mathematics' and by Maple see A201637. For a (0,0) based version which has this triangle as a subtriangle see A340556.

Programs

  • Maple
    with(combinat): A008517 := proc(n, m) local k: add((-1)^(n+k)* binomial(2*n+1, k)* stirling1(2*n-m-k+1, n-m-k+1), k=0..n-m) end: seq(seq(A008517(n, m), m=1..n), n=1..8);
    # Johannes W. Meijer, Oct 16 2009, revised Nov 22 2012
    A008517 := proc(n,k) option remember; `if`(n=1,`if`(k=0,1,0), A008517(n-1,k)* (k+1) + A008517(n-1,k-1)*(2*n-k-1)) end: seq(print(seq(A008517(n,k), k=0..n-1)), n=1..9);
    # Peter Luschny, Apr 20 2011
  • Mathematica
    a[n_, m_] = Sum[(-1)^(n + k)*Binomial[2 n + 1, k]*StirlingS1[2n-m-k+1, n-m-k+1], {k, 0, n-m}]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 44]] (* Jean-François Alcover, May 18 2011, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = my(z); if( n<1, 0, z = 1 + O(x); for( k=1, n, z = 1 + intformal( z^2 * (z+y-1))); n! * polcoeff( polcoeff(z, n),k))}; /* Michael Somos, Oct 13 2002 */
    
  • PARI
    {T(n,k)=polcoeff((1-x)^(2*n+1)*sum(j=0,2*n+1,j^(n+j)*x^j/j!*exp(-j*x +x*O(x^k))),k)} \\ Paul D. Hanna, Oct 31 2012
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n, m) = sum(k=0, n-m, (-1)^(n+k)*binomial(2*n+1, k)*stirling(2*n-m-k+1, n-m-k+1, 1)); \\ Michel Marcus, Dec 07 2021
    
  • Sage
    @CachedFunction
    def A008517(n, k):
        if n==1: return 1 if k==0 else 0
        return A008517(n-1,k)*(k+1)+A008517(n-1,k-1)*(2*n-k-1)
    for n in (1..9): [A008517(n, k) for k in(0..n-1)] # Peter Luschny, Oct 31 2012

Formula

T(n,k) = 0 if n < k, T(1,1) = 1, T(n,-1) = 0, T(n,k) = k*T(n-1,k) + (2*n-k)*T(n-1,k-1).
a(n,m) = Sum_{k=0..n-m} (-1)^(n+k)*binomial(2*n+1, k)*Stirling1(2*n-m-k+1, n-m-k+1). - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x-(1+2^k*t)*x^2/2+(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 1 and for the Eulerian numbers A008292 when k = 0.
Let v = -t*exp((1-t)^2*x-t) and let B(x,t) = -(1+1/t*LambertW(v))/(1+LambertW(v)). From the e.g.f. given by Copeland above we find B(x,t) = compositional inverse with respect to x of G(1,x,t) = Sum_{n>=1} R(n,t)*x^n/n! = x+(1+2*t)*x^2/2!+(1+8*t+6*t^2)*x^3/3!+.... The function B(x,t) satisfies the differential equation dB/dx = (1+B)*(1+t*B)^2 = 1 + (2*t+1)*B + t*(t+2)*B^2 + t^2*B^3.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the row generating polynomials R(n,t): R(n,t) counts plane increasing trees where each vertex has outdegree <= 3, the vertices of outdegree 1 come in 2*t+1 colors, the vertices of outdegree 2 come in t*(t+2) colors and the vertices of outdegree 3 come in t^2 colors. An example is given below. Cf. A008292. Applying [Dominici, Theorem 4.1] gives the following method for calculating the row polynomials R(n,t): Let f(x,t) = (1+x)*(1+t*x)^2 and let D be the operator f(x,t)*d/dx. Then R(n+1,t) = D^n(f(x,t)) evaluated at x = 0. (End)
From Tom Copeland, Oct 03 2011: (Start)
a(n,k) = Sum_{i=0..k} (-1)^(k-i) binomial(n-i,k-i) A134991(n,i), offsets 0.
P(n+1,t) = (1-t)^(2n+1) Sum_{k>=1} k^(n+k) [t*exp(-t)]^k / k! for n>0; consequently, Sum_{k>=1} (-1)^k k^(n+k) x^k/k!= [1+LW(x)]^(-(2n+1))P[n+1,-LW(x)] where LW(x) is the Lambert W-Function and P(n,t), for n > 0, are the row polynomials as given in Copeland's 2008 comment. (End)
The e.g.f. A(x,t) = -v * { Sum_{j>=1} D(j-1,u) (-z)^j / j! } where u=x*(1-t)^2-t, v=(1+u)/(1-t), z=(t+u)/[(1+u)^2] and D(j-1,u) are the polynomials of A042977. dA(x,t)/dx=(1-t)/[1+u-(1-t)A(x,t)]=(1-t)/{1+LW[-t exp(u)]}, (Copeland's e.g.f. in 2008 comment). - Tom Copeland, Oct 06 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
The compositional inverse (with respect to x) of y = y(t;x) = (x-t*(exp(x)-1)) is 1/(1-t)*y + t/(1-t)^3*y^2/2! + (t+2*t^2)/(1-t)^5*y^3/3! + (t+8*t^2+6*t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed in the Comments section, the rational functions in t are the generating functions for the diagonals of the triangle of Stirling numbers of the second kind (A048993). See the Bala link for a proof. Cf. A112007 and A134991. - Peter Bala, Dec 04 2011
O.g.f. of row n: (1-x)^(2*n+1) * Sum_{k>=0} k^(n+k) * exp(-k*x) * x^k/k!. - Paul D. Hanna, Oct 31 2012
T(n, k) = n!*[x^n][t^k](egf) where egf = (1-t)/(1 + LambertW(-exp(t^2*x - 2*t*x - t + x)*t)) and after expansion W(-exp(-t)t) is substituted by (-t). - Shamil Shakirov, Feb 17 2025

A008299 Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
Offset: 2

Views

Author

Keywords

Comments

T(n,k) is the number of set partitions of [n] into k blocks of size at least 2. Compare with A008277 (blocks of size at least 1) and A059022 (blocks of size at least 3). See also A200091. Reading the table by diagonals gives A134991. The row generating polynomials are the Mahler polynomials s_n(-x). See [Roman, 4.9]. - Peter Bala, Dec 04 2011
Row n gives coefficients of moments of Poisson distribution about the mean expressed as polynomials in lambda [Haight]. The coefficients of the moments about the origin are the Stirling numbers of the second kind, A008277. - N. J. A. Sloane, Jan 24 2020
Rows are of lengths 1,1,2,2,3,3,..., a pattern typical of matrices whose diagonals are rows of another lower triangular matrix--in this instance those of A134991. - Tom Copeland, May 01 2017
For a relation to decomposition of spin correlators see Table 2 of the Delfino and Vito paper. - Tom Copeland, Nov 11 2012

Examples

			There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
  1;
  1;
  1,    3;
  1,   10;
  1,   25,     15;
  1,   56,    105;
  1,  119,    490,     105;
  1,  246,   1918,    1260;
  1,  501,   6825,    9450,      945;
  1, 1012,  22935,   56980,    17325;
  1, 2035,  74316,  302995,   190575,   10395;
  1, 4082, 235092, 1487200,  1636635,  270270;
  1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
  ...
Reading the table by diagonals produces the triangle A134991.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
  • S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.

Crossrefs

Rows: A000247 (k=2), A000478 (k=3), A058844 (k=4).
Row sums: A000296, diagonal: A259877.

Programs

  • Maple
    A008299 := proc(n,k) local i,j,t1; if k<1 or k>floor(n/2) then t1 := 0; else
    t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
    G:= exp(lambda*(exp(x)-1-x)):
    S:= series(G,x,21):
    seq(seq(coeff(coeff(S,x,n)*n!,lambda,k),k=1..floor(n/2)),n=2..20); # Robert Israel, Jan 15 2020
    T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
    seq(seq(T(n,k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
  • Mathematica
    t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
    Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
  • PARI
    {T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
    
  • PARI
    { T(n,k) = sum(i=0,min(n,k), (-1)^i * binomial(n,i) * stirling(n-i,k-i,2) ); } /* Max Alekseyev, Feb 27 2017 */

Formula

T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
T(n,k) = A134991(n-k,k); A134991(n,k) = T(n+k,k).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021

Extensions

Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020

A001897 Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).

Original entry on oeis.org

1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0

Views

Author

Keywords

Comments

Same as half the denominators of the even-indexed Bernoulli numbers B_{2*n} for n>0, by the von Staudt-Clausen theorem and Fermat's little theorem. - Bernd C. Kellner and Jonathan Sondow, Jan 02 2017 [This is implemented in the second Maple program. - Peter Luschny, Aug 21 2021]

Examples

			Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
  • Maple
    b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
    a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
    # Alternative :
    Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
    S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
    A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
    A001897_list(52); # Peter Luschny, Oct 03 2011
  • Mathematica
    a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
    
  • Sage
    def A001897(n):
        if n == 0:
            return 1
        M = (d + 1 for d in divisors(2 * n))
        return prod(s for s in M if is_prime(s)) / 2
    [A001897(n) for n in range(55)]  # Peter Luschny, Feb 20 2016
    

Formula

a(0)=1, a(n)=(1/2)*A002445(n) for n>=1. - Joerg Arndt, May 07 2012
a(n) = denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
a(0)=1, a(n) = (1/2)*A027642(2*n) = (3/2)*A277087(n) for n>=1. - Jonathan Sondow, Dec 14 2016
From Peter Luschny, Sep 06 2017: (Start)
a(n) = denominator(r(n)) where r(n) = Sum_{0..n} (-1)^(n-k)*A241171(n, k)/(2*k+1).
a(n) = denominator(bernoulli(2*n, 1/2))/4^n = A033469(n)/4^n. (End)
Apparently a(n) = denominator(Sum_{k=0..2*n-2} (-1)^k*E2(2*n-1, k+1)/binomial(4*n-1, k+1)), where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

A163936 Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher-order exponential integral E(x,m=1,n) lead to triangle A130524, see A163931 for information on E(x,m,n). The o.g.f.s. of the right-hand columns of triangle A130534 have a nice structure: gf(p) = W1(z,p)/(1-z)^(2*p-1) with p = 1 for the first right-hand column, p = 2 for the second right-hand column, etc. The coefficients of the W1(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. Our triangle is the same as A112007 with an extra right-hand column, see also the second Eulerian triangle A008517. The row sums of our triangle lead to A001147.
We observe that the row sums of the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4) for z=1 lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four left-hand columns of the triangle of the Bessel coefficients A001497 or, if one wishes, the right-hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next left- (right-) hand columns of A001497 (A001498). An interesting phenomenon.
If one assumes the triangle not (1,1) based but (0,0) based, one has T(n, k) = E2(n, n-k), where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 12 2021

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,       0;
[ 3]      2,       1,      0;
[ 4]      6,       8,      1,      0;
[ 5]     24,      58,     22,      1,      0;
[ 6]    120,     444,    328,     52,      1,     0;
[ 7]    720,    3708,   4400,   1452,    114,     1,   0;
[ 8]   5040,   33984,  58140,  32120,   5610,   240,   1,  0;
[ 9]  40320,  341136, 785304, 644020, 195800, 19950, 494,  1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
		

Crossrefs

Row sums equal A001147.
A000142, A002538, A002539, A112008, A112485 are the first few left hand columns.
A000007, A000012, A005803(n+2), A004301, A006260 are the first few right hand columns.
Cf. A163931 (E(x,m,n)), A048994 (Stirling1) and A008517 (Euler).
Cf. A112007, A163937 (E(x,m=2,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).
Cf. A001497 (Bessel), A001498 (Bessel), A001147 (m=1), A001147 (m=2), A001879 (m=3) and A000457 (m=4), A001880 (m=5), A001881 (m=6) and A038121 (m=7).
Cf. A340556.

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9);  # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
    
  • PARI
    \\ assuming offset = 0:
    E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x)));
    { for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021

Formula

a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021

A141459 a(n) = Product_{p-1 divides n} p, where p is an odd prime.

Original entry on oeis.org

1, 1, 3, 1, 15, 1, 21, 1, 15, 1, 33, 1, 1365, 1, 3, 1, 255, 1, 399, 1, 165, 1, 69, 1, 1365, 1, 3, 1, 435, 1, 7161, 1, 255, 1, 3, 1, 959595, 1, 3, 1, 6765, 1, 903, 1, 345, 1, 141, 1, 23205, 1, 33, 1, 795, 1, 399, 1, 435, 1, 177, 1, 28393365, 1, 3, 1, 255, 1, 32361, 1, 15, 1, 2343, 1, 70050435
Offset: 0

Views

Author

Paul Curtz, Aug 08 2008

Keywords

Comments

Previous name was: A027760(n)/2 for n>=1, a(0) = 1.
Conjecture: a(n) = denominator of integral_{0..1}(log(1-1/x)^n) dx. - Jean-François Alcover, Feb 01 2013
Define the generalized Bernoulli function as B(s,z) = -s*z^s*HurwitzZeta(1-s,1/z) for Re(1/z) > 0 and B(0,z) = 1 for all z; further the generalized Bernoulli polynomials as Bp(m,n,z) = Sum_{j=0..n} B(j,m)*C(n,j)*(z-1)^(n-j) then the a(n) are denominators of Bp(2,n,1), i. e. of the generalized Bernoulli numbers in the case m=2. The numerators of these numbers are A157779(n). - Peter Luschny, May 17 2015
From Peter Luschny, Nov 22 2015: (Start)
a(n) are the denominators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The numerators are A239275(n).
a(n) is the odd part of A141056(n).
a(n) is squarefree, by the von Staudt-Clausen theorem. (End)
Apparently a(n) = denominator(Sum_{k=0..n-1}(-1)^k*E2(n-1, k+1)/binomial(2*n-1, k+1)) where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

Examples

			The denominators of 1, 0, -1/3, 0, 7/15, 0, -31/21, 0, 127/15, 0, -2555/33, 0, 1414477/1365, ...
		

Crossrefs

Programs

  • Maple
    Bfun := (s,z) -> `if`(s=0,1,-s*z^s*Zeta(0,1-s,1/z): # generalized Bernoulli function
    Bpoly := (m,n,z) -> add(Bfun(j,m)*binomial(n,j)*(z-1)^(n-j),j=0..n): # generalized Bernoulli polynomials
    seq(Bpoly(2,n,1),n=0..50): denom([%]);
    # which simplifies to:
    a := n -> 0^n+add(Zeta(1-j)*(2^j-2)*j*binomial(n,j), j=1..n):
    seq(denom(a(n)), n=0..50); # Peter Luschny, May 17 2015
    # Alternatively:
    with(numtheory):
    ClausenOdd := proc(n) local S, m;
    S := map(i -> i + 1, divisors(n));
    S := select(isprime, S) minus {2};
    mul(m, m = S) end: seq(ClausenOdd(n), n=0..72); # Peter Luschny, Nov 22 2015
    # Alternatively:
    N:= 1000: # to get a(0) to a(N)
    V:= Array(0..N, 1):
    for p in select(isprime, [seq(i,i=3..N+1,2)]) do
      R:=[seq(j,j=p-1..N, p-1)]:
      V[R]:= V[R] * p;
    od:
    convert(V,list); # Robert Israel, Nov 22 2015
  • Mathematica
    a[n_] := If[OddQ[n], 1, Denominator[-2*(2^(n - 1) - 1)*BernoulliB[n]]]; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jan 30 2013 *)
    Table[Times @@ Select[Divisors@ n + 1, PrimeQ@ # && OddQ@ # &] + Boole[n == 0], {n, 0, 72}] (* Michael De Vlieger, Apr 30 2017 *)
  • PARI
    A141056(n) =
    {
        p = 1;
        if (n > 0,
            fordiv(n, d,
                r = d + 1;
                if (isprime(r) & r>2, p = p*r)
            )
        );
        return(p)
    }
    for(n=0, 72, print1(A141056(n), ", ")); \\ Peter Luschny, Nov 22 2015
    
  • Sage
    def A141459_list(size):
        f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size))
        t = taylor(f, x, 0, size)
        return [(factorial(n)*s).denominator() for n,s in enumerate (t.list())]
    print(A141459_list(72)) # Peter Luschny, Jul 05 2016

Formula

a(2*n+1) = 1. a(2*n)= A001897(n).
a(n) = denominator(0^n + Sum_{j=1..n} zeta(1-j)*(2^j-2)*j*C(n,j)). - Peter Luschny, May 17 2015
Let P(x)= Sum_{n>=0} x^(2*n+1)/(2*n+1)! then a(n) = denominator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016
a(n) = A157818(n)/4^n. See a comment under A157817, also for other Bernoulli numbers B[4,1] and B[4,3] with this denominator. - Wolfdieter Lang, Apr 28 2017

Extensions

1 prepended and offset set to 0 by Peter Luschny, May 17 2015
New name from Peter Luschny, Nov 22 2015
Showing 1-10 of 16 results. Next