A340572 Number of partitions of n into 4 parts with at least one prime part.
0, 0, 0, 0, 0, 1, 2, 2, 5, 5, 8, 10, 13, 16, 21, 24, 31, 35, 41, 49, 57, 64, 75, 84, 95, 107, 119, 133, 147, 164, 179, 198, 215, 236, 256, 281, 300, 329, 349, 382, 407, 441, 465, 506, 531, 575, 603, 652, 681, 733, 765, 822, 853, 919, 952, 1019, 1057, 1128, 1166, 1247, 1284
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n, i, t) option remember; series( `if`(n=0, t, `if`(i<1, 0, expand(x*b(n-i, min(n-i, i), `if`(isprime(i), 1, t)))+b(n, i-1, t))), x, 5) end: a:= n-> coeff(b(n$2, 0), x, 4): seq(a(n), n=0..60); # Alois P. Heinz, Oct 24 2021
-
Mathematica
Table[Sum[Sum[Sum[Sign[(PrimePi[k] - PrimePi[k - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[i] - PrimePi[i - 1]) + (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1])], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]
Formula
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( c(k) + c(j) + c(i) + c(n-i-j-k) ), where c is the prime characteristic (A010051).