cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340572 Number of partitions of n into 4 parts with at least one prime part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 2, 5, 5, 8, 10, 13, 16, 21, 24, 31, 35, 41, 49, 57, 64, 75, 84, 95, 107, 119, 133, 147, 164, 179, 198, 215, 236, 256, 281, 300, 329, 349, 382, 407, 441, 465, 506, 531, 575, 603, 652, 681, 733, 765, 822, 853, 919, 952, 1019, 1057, 1128, 1166, 1247, 1284
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; series(
         `if`(n=0, t, `if`(i<1, 0, expand(x*b(n-i, min(n-i, i),
         `if`(isprime(i), 1, t)))+b(n, i-1, t))), x, 5)
        end:
    a:= n-> coeff(b(n$2, 0), x, 4):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 24 2021
  • Mathematica
    Table[Sum[Sum[Sum[Sign[(PrimePi[k] - PrimePi[k - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[i] - PrimePi[i - 1]) + (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1])], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( c(k) + c(j) + c(i) + c(n-i-j-k) ), where c is the prime characteristic (A010051).