A340591 Number A(n,k) of n*(k+1)-step k-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 16, 5, 1, 1, 24, 288, 192, 14, 1, 1, 120, 9216, 24444, 2816, 42, 1, 1, 720, 460800, 7303104, 2738592, 46592, 132, 1, 1, 5040, 33177600, 4234233600, 8204167296, 361998432, 835584, 429, 1, 1, 40320, 3251404800, 4223111040000, 59027412643200, 11332298092032, 53414223552, 15876096, 1430, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 6, 24, 120, ... 1, 2, 16, 288, 9216, 460800, ... 1, 5, 192, 24444, 7303104, 4234233600, ... 1, 14, 2816, 2738592, 8204167296, 59027412643200, ... 1, 42, 46592, 361998432, 11332298092032, 1052109889288796160, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..24, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add( `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+ `if`(add(i, i=l)+k
x+1, l)), 0))(nops(l))) end: A:= (n, k)-> b(k*n+n, [0$k]): seq(seq(A(n, d-n), n=0..d), d=0..10); -
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[ If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}]+ If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]]; A[n_, k_] := b[k*n + n, Table[0, {k}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)