cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093545 Sorted mapping of A093544 onto the integers.

Original entry on oeis.org

0, 2, 1, 5, 7, 3, 10, 12, 4, 15, 17, 6, 20, 22, 8, 25, 27, 9, 30, 32, 11, 35, 37, 13, 40, 42, 14, 45, 47, 16, 50, 52, 18, 55, 57, 19, 60, 62, 21, 65, 67, 23, 70, 72, 24, 75, 77, 26, 80, 82, 28, 85, 87, 29, 90, 92, 31, 95, 97, 33, 100, 102, 34, 105, 107, 36, 110, 112, 38
Offset: 0

Views

Author

Ralf Stephan, Mar 31 2004

Keywords

Comments

As A093544 contains the odd numbers not of form 12k+9, we map from modulo 12 to modulo 5: 1->0, 3->1, 5->2, 7->3, 11->4.

Crossrefs

Cf. A047206, A340615 (inverse permutation), A014682.

Programs

  • Mathematica
    CoefficientList[Series[x (x^10 + 3 x^9 + 5 x^8 + x^7 + 5 x^6 + 5 x^5 + 2 x^4 + 5 x^3 + 5 x^2 + x + 2)/(1 - x^3 - x^9 + x^12), {x, 0, 68}], x] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    a(n)=5*(A093544(n)\12)+if(A093544(n)%12==11,4,((A093544(n)%12)-1)/2)

Formula

a(3n) = 5n, a(3n+1) = 5n+2, a(3n+2) = A047206(n).
G.f.: x*(x^10 + 3*x^9 + 5*x^8 + x^7 + 5*x^6 + 5*x^5 + 2*x^4 + 5*x^3 + 5*x^2 + x + 2)/(1 - x^3 - x^9 + x^12).

A340709 Let k = n/2 + floor(n/4) if n is even, otherwise (3n+1)/2; then a(n) = A093545(k).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 6, 10, 8, 12, 9, 15, 11, 17, 13, 20, 14, 22, 16, 25, 18, 27, 19, 30, 21, 32, 23, 35, 24, 37, 26, 40, 28, 42, 29, 45, 31, 47, 33, 50, 34, 52, 36, 55, 38, 57, 39, 60, 41, 62, 43, 65, 44, 67, 46, 70, 48, 72, 49, 75, 51, 77, 53, 80, 54, 82, 56, 85, 58, 87
Offset: 0

Views

Author

Thomas Scheuerle, Jan 16 2021

Keywords

Comments

This is a permutations of the nonnegative integers.
A093545 is the inverse of A340615.
Some of the cycles of this permutation are: (0),(1),(2),(3),(5 4),(7 6),(10 12 15 13 11 9 8),(17 14),(20 25 21 18 22 27 23 19 16),... .
A340615 and A342131 are permutations, constructed by a small modification of Collatz function (A014682). This sequence relates these permutations which each other: A340615(a(n)) = A342131(n).

Crossrefs

Programs

  • MATLAB
    function a = A340709(max_n)
        for n = 1:max_n*10
            k = (n-1)+floor(((n-1)+1)/5);
            m = n-1;
            if floor(k/2) == k/2
                A340615(n) = k/2;
            else
                A340615(n) = (k*3+1)/2;
            end
            if floor(m/2) == m/2
                b(n) = m/2+floor(m/4);
            else
                b(n) = (m*3+1)/2;
            end
        end
        for n = 1:(length(A340615)/10)
            a(n) = find(A340615==b(n))-1;
        end
    end

Formula

a(4*m) = 5*m.
a(2+4*m) = 2+5*m.
a(1+6*m) = 1+5*m.
a(3+6*m) = 3+5*m.
a(4+6*m) = 4+5*m.
a(n) = -2*a(n-1) - 3*a(n-2) - 4*a(n-3) - 4*a(n-4) - 4*a(n-5) - 3*a(n-6) - 2*a(n-7) - a(n-8) + 25n - 101 for n >= 8.
a(n) = A093545(A342131(n)).
G.f.: x*(1 + 2*x + 3*x^2 + 5*x^3 + 3*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + x^8)/(1 - x^4 - x^6 + x^10). - Stefano Spezia, Mar 01 2021
Showing 1-2 of 2 results.