cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340616 Decimal expansion of sqrt(3)-sqrt(2).

Original entry on oeis.org

3, 1, 7, 8, 3, 7, 2, 4, 5, 1, 9, 5, 7, 8, 2, 2, 4, 4, 7, 2, 5, 7, 5, 7, 6, 1, 7, 2, 9, 6, 1, 7, 4, 2, 8, 8, 3, 7, 3, 1, 3, 3, 3, 7, 8, 4, 3, 3, 4, 3, 2, 5, 5, 4, 8, 7, 9, 1, 2, 7, 2, 4, 1, 4, 6, 1, 2, 0, 0, 5, 3, 8
Offset: 0

Views

Author

R. J. Mathar, Jan 14 2021

Keywords

Comments

From Bernard Schott, Jan 16 2021: (Start)
Equals the smallest positive root of x^4 - 10*x^2 + 1 (minimal polynomial).
An approximation to 1/Pi (see corresponding comment in A135611). (End)

Examples

			0.317837245195782244725...
		

Crossrefs

Cf. A002193 (sqrt(2)), A002194 (sqrt(3)), A135611 (sqrt(2) + sqrt(3)), A246723 (5-2*sqrt(6)).
Cf. A172264 (Beatty sequence).

Programs

  • Maple
    sqrt(3)-sqrt(2) ; evalf(%) ;
  • Mathematica
    RealDigits[Sqrt[3] - Sqrt[2], 10, 100][[1]] (* Wesley Ivan Hurt, Jan 14 2021 *)
  • PARI
    sqrt(3)-sqrt(2) \\ Michel Marcus, Jan 15 2021

Formula

Equals A002194 - A002193.
Equals A135611 - A010466.
Equals 1/A135611. - Bernard Schott, Jan 15 2021
Equals sqrt(A246723). - Kevin Ryde, Jan 15 2021