cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340631 a(n) is the minimum number of pebbles such that any assignment of those pebbles on a complete graph with n vertices is a next-player winning game in the two-player impartial pebbling game.

Original entry on oeis.org

7, 23, 7, 13, 9, 15, 11, 17, 13, 19, 15, 21, 17, 23, 19, 25, 21, 27, 23, 29, 25, 31, 27, 33, 29, 35, 31, 37, 33, 39, 35, 41, 37, 43, 39, 45, 41, 47, 43, 49, 45, 51, 47, 53, 49, 55, 51, 57, 53, 59, 55, 61, 57, 63, 59, 65, 61, 67, 63, 69, 65, 71, 67, 73, 69, 75
Offset: 3

Views

Author

Keywords

Comments

A move in an impartial two-player pebbling game consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex. The winning player is the one who makes the final allowable move. We start at n = 3 because we have shown a(2) does not exist.

Examples

			For n=3, a(3)=7 is the least number of pebbles for which every game in a next-player winning game regardless of assignment.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Crossrefs

Cf. A084964.

Programs

  • Mathematica
    (* Given n and m, list all possible assignments. *)
    alltuples[n_, m_] := IntegerPartitions[m + n, {n}] - 1;
    (* Given an assignment, list all resultant assignments after one pebbling move; only work for n>=3. *)
    pebblemoves[config_] := Block[{n, temp}, n = Length[config]; temp = Table[config, {i, n (n - 1)}] + Permutations[Join[{-2, 1}, Table[0, {i, n - 2}]]]; temp = Select[temp, Min[#] >= 0 &]; temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]];
    (* Given n and m, list all assignments that are P-games. *)
    Plist = {};plist[n_, m_] := Block[{index, tuples}, While[Length[Plist] < n, index = Length[Plist]; AppendTo[Plist, {{Join[{1}, Table[0, {i, index}]]}}]]; Do[AppendTo[Plist[[n]], {}]; tuples = alltuples[n, i]; Do[If[Not[IntersectingQ[pebblemoves[tuples[[j]]], Plist[[n, i - 1]]]], AppendTo[Plist[[n, i]], tuples[[j]]]], {j, Length[tuples]}], {i, Length[Plist[[n]]] + 1, m}]; Plist[[n, m]]];
    (* Given n, print out the minimum m such that there are no P-games with m pebbles *)
    Do[m = 1; While[plist[n, m] != {}, m++]; Print["n=", n, " m=", m], {n, 3, 20}]

Formula

For n>2, a(2n-1)=2n+1, a(2n)=a(2n+5)=2n+7.
G.f.: x^3*(12*x^4-10*x^3-23*x^2+16*x+7)/((x+1)*(x-1)^2).
For n>=5, a(n) = 2*A084964(n+4) - 1 = 2*A084964(n+2) + 1. - Hugo Pfoertner, Jan 14 2021