A340638 Integers whose number of divisors that are Zuckerman numbers sets a new record.
1, 2, 4, 6, 12, 24, 72, 144, 360, 432, 1080, 2016, 2160, 6048, 8064, 15120, 24192, 48384, 88704, 120960, 241920, 266112, 532224, 1064448, 1862784, 2661120, 3725568, 5322240, 7451136, 10450944, 19160064, 20901888, 28740096, 38320128, 57480192, 99283968, 114960384
Offset: 1
Examples
The 8 divisors of 24 are all Zuckerman numbers, and also, 24 is the smallest integer that has at least 8 divisors that are Zuckerman numbers, hence 24 is a term.
Links
- Giovanni Resta, Zuckerman numbers, Numbers Aplenty.
Crossrefs
Programs
-
Mathematica
zuckQ[n_] := (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; s[n_] := DivisorSum[n, 1 &, zuckQ[#] &]; smax = 0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jan 14 2021 *)
-
PARI
isokz(n) = iferr(!(n % vecprod(digits(n))), E, 0); \\ A007602 lista(nn) = {my(m=0); for (n=1, nn, my(x = sumdiv(n, d, isokz(d));); if (x > m, m = x; print1(n, ", ")););} \\ Michel Marcus, Jan 15 2021
Extensions
More terms from David A. Corneth and Amiram Eldar, Jan 15 2021
Comments