cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340643 Numbers k such that the two perfect powers immediately adjacent to k^2 both have exponents greater than 2.

Original entry on oeis.org

2, 3, 5, 15, 26, 46, 82, 89, 90, 129, 323, 362, 401, 420, 610, 624, 840, 2024, 2703, 2808, 6888, 12099, 15963, 19320, 24650, 29930, 33490, 36482, 39203, 45795, 47523, 52440, 66050, 69168, 83408, 94248, 94863, 103683, 114284, 164399, 185364, 206442, 222785, 227530, 229180
Offset: 1

Views

Author

Hugo Pfoertner, Jan 14 2021

Keywords

Comments

Within the range of the data, a(n)^2 = A340642(n), i.e., no 3 immediately consecutive perfect powers x^p1, y^p2, z^p3 with min (p1, p2, p3) > 2 are seen. Is there a counterexample?

Crossrefs

Programs

  • PARI
    a340643(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(issquare(n1)&p2>2&p0>2, print1(sqrtint(n1),", ")); n2=n1; n1=n; p2=p1; p1=p0))};
    a340643(10^8)
    
  • PARI
    upto(n) = {n *= n; my(v = List(), res = List([2])); for(i = 2, sqrtnint(n, 3), for(e = 3, logint(n, i), listput(v, i^e) ); ); listsort(v, 1); for(i = 1, #v - 1, if(sqrtint(v[i]) + 1 == sqrtint(v[i+1]) - issquare(v[i+1]), listput(res, sqrtint(v[i+1]-issquare(v[i+1]))); ) ); res }

Extensions

More terms from David A. Corneth, Jan 14 2021