A340668 The number of overpartitions of n where the number of non-overlined parts is at least two more than the number of overlined parts.
0, 0, 1, 2, 5, 9, 17, 29, 49, 79, 125, 193, 293, 437, 642, 932, 1336, 1896, 2663, 3709, 5121, 7020, 9551, 12913, 17347, 23172, 30779, 40679, 53495, 70030, 91269, 118459, 153133, 197214, 253057, 323595, 412418, 523953, 663612, 838035, 1055304, 1325287, 1659969
Offset: 0
Keywords
Examples
a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
Links
- B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add( add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[ Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
Formula
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/ ((Product_{k=1..n} (1-q^k)^2) * (1-q^(n+1))).
Comments