cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340661 a(n) is the start of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).

Original entry on oeis.org

4, 36, 144, 361, 1369, 4225, 10816, 17689, 29929, 69169, 140625, 166464, 314721, 474721, 729316, 1225449, 1817104, 2353156, 3308761, 4251844, 5832225, 8242641, 10942864, 13653025, 17986081, 23396569, 28654609, 35940025, 43243776, 53158681, 67420521, 80622441, 97337956
Offset: 1

Views

Author

Hugo Pfoertner, Jan 18 2021

Keywords

Examples

			Table of initial terms of a(n), A340662, A340663, A340664, and A340695:
    bounded below by       n consecutive squares       terminated by
         |             a(n)          A340662(n)           A340695(n)
  n      |               |  A340663(n)^2  |  A340664(n)^2   |
  1      1 =  1^(>2),    4 =   2^2         4 =   2^2,       8 =  2^ 3
  2     32 =  2^ 5,     36 =   6^2 ...    49 =   7^2,      64 =  2^ 6
  3    128 =  2^ 7,    144 =  12^2 ...   196 =  14^2,     216 =  6^ 3
  4    343 =  7^ 3,    361 =  19^2 ...   484 =  22^2,     512 =  2^ 9
  5   1331 = 11^ 3,   1369 =  37^2 ...  1681 =  41^2,    1728 = 12^ 3
  6   4096 =  2^12,   4225 =  65^2 ...  4900 =  70^2,    4913 = 17^ 3
  7  10648 = 22^ 3,  10816 = 104^2 ... 12100 = 110^2,   12167 = 23^ 3
  8  17576 = 26^ 3,  17689 = 133^2 ... 19600 = 140^2,   19683 =  3^ 9
  9  29791 = 31^ 3,  29929 = 173^2 ... 32761 = 181^2,   32768 =  2^15
		

Crossrefs

Formula

a(n) = A340663(n)^2.

A340662 a(n) is the end of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).

Original entry on oeis.org

4, 49, 196, 484, 1681, 4900, 12100, 19600, 32761, 73984, 148225, 175561, 328329, 492804, 753424, 1258884, 1860496, 2405601, 3374569, 4330561, 5929225, 8363664, 11088900, 13823524, 18190225, 23639044, 28933641, 36264484, 43612816, 53582400, 67914081, 81180100, 97970404
Offset: 1

Views

Author

Hugo Pfoertner, Jan 18 2021

Keywords

Examples

			See A340661.
		

Crossrefs

Formula

a(n) = A340664(n)^2 = A340663(n)^2 + (n - 1)*(2*A340663(n) + n - 1).

A340663 a(n)^2 is the start of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).

Original entry on oeis.org

2, 6, 12, 19, 37, 65, 104, 133, 173, 263, 375, 408, 561, 689, 854, 1107, 1348, 1534, 1819, 2062, 2415, 2871, 3308, 3695, 4241, 4837, 5353, 5995, 6576, 7291, 8211, 8979, 9866, 10880, 11995, 12934, 14113, 15326, 16572, 17889, 19159, 20663, 22289, 23869, 25750, 27361
Offset: 1

Views

Author

Hugo Pfoertner, Jan 18 2021

Keywords

Examples

			See A340661.
		

Crossrefs

Formula

a(n) = sqrt(A340661(n)).

A340664 a(n)^2 is the end of the first occurrence of n consecutive perfect powers, all of which are squares with exponents equal to 2 (A111245).

Original entry on oeis.org

2, 7, 14, 22, 41, 70, 110, 140, 181, 272, 385, 419, 573, 702, 868, 1122, 1364, 1551, 1837, 2081, 2435, 2892, 3330, 3718, 4265, 4862, 5379, 6022, 6604, 7320, 8241, 9010, 9898, 10913, 12029, 12969, 14149, 15363, 16610, 17928, 19199, 20704, 22331, 23912, 25794, 27406
Offset: 1

Views

Author

Hugo Pfoertner, Jan 18 2021

Keywords

Examples

			See A340661.
		

Crossrefs

Formula

a(n) = sqrt(A340662(n)) = A340663(n) + n - 1.
Showing 1-4 of 4 results.