A340728 a(n) is the number of divisors d of n such that n/d - d is prime.
0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 1, 0, 0, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 0, 1, 0, 3, 1
Offset: 1
Keywords
Examples
a(8) = 2; among the divisors {1,2,4,8} of 8, there are two cases where 8/d-d is prime: 8/1-1 = 7 and 8/2-2 = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local D,i,m; D:= sort(convert(numtheory:-divisors(n),list)); m:= nops(D); nops(select(i -> isprime(D[m+1-i]-D[i]), [$1..(m+1)/2])); end proc: map(f, [$1..100]);
-
PARI
a(n) = sumdiv(n, d, isprime(n/d-d)); \\ Michel Marcus, Jan 18 2021
Formula
a(n) = Sum_{d|n} c(n/d-d), where c is the prime characteristic (A010051). - Wesley Ivan Hurt, Jan 18 2021
Comments