A340740 a(n) is the sum of all the remainders when n is divided by positive integers less than n/2 and coprime to n.
0, 0, 0, 0, 1, 0, 2, 2, 2, 1, 7, 2, 7, 6, 5, 4, 15, 7, 19, 10, 9, 8, 32, 9, 20, 20, 28, 13, 46, 14, 47, 31, 27, 31, 48, 17, 62, 39, 58, 26, 87, 26, 94, 53, 52, 41, 127, 48, 100, 65, 79, 61, 154, 52, 105, 62, 90, 80, 200, 45, 180, 113, 138, 103, 162, 77, 229, 116, 149, 73, 274, 87, 257, 166, 178
Offset: 1
Examples
For n = 11, a(11) = (11 mod 1)+(11 mod 2)+(11 mod 3)+(11 mod 4)+(11 mod 5) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A067439.
Programs
-
Maple
f:= proc(n) local k; add(`if`(igcd(k,n)=1, n mod k, 0),k=1..floor(n/2)) end proc: map(f, [$1..100]);
-
Mathematica
Table[Sum[Mod[n, i]*Floor[1/GCD[i, n]], {i, Floor[(n - 1)/2]}], {n, 100}] (* Wesley Ivan Hurt, Jan 18 2021 *)
-
PARI
a(n) = sum(k=1, n\2, if (gcd(k, n)==1, n%k)); \\ Michel Marcus, Jan 18 2021
-
Python
from math import gcd def A340740(n): return sum(n % k for k in range(1,n//2+1) if gcd(k,n) == 1) # Chai Wah Wu, Mar 18 2021
Formula
a(n) = Sum_{k=1..floor((n-1)/2)} (n mod k) * floor(1/gcd(n,k)). - Wesley Ivan Hurt, Jan 18 2021