A340756 Number of partitions of n into 4 semiprime parts.
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 3, 4, 2, 3, 4, 5, 6, 5, 4, 7, 7, 9, 9, 9, 7, 9, 12, 13, 11, 11, 13, 16, 17, 17, 18, 18, 17, 20, 25, 25, 23, 24, 26, 32, 29, 31, 33, 31, 33, 35, 43, 43, 40, 39, 45, 48, 52, 50, 52, 53, 52, 61, 69, 67, 61, 61, 70, 79, 76, 76, 80, 81, 85, 88, 101
Offset: 16
Keywords
Links
Programs
-
Mathematica
Table[Sum[Sum[Sum[KroneckerDelta[PrimeOmega[k], PrimeOmega[j], PrimeOmega[i], PrimeOmega[n - i - j - k], 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 16, 100}] Table[Count[IntegerPartitions[n,{4}],?(PrimeOmega[#]=={2,2,2,2}&)],{n,16,95}] (* _Harvey P. Dale, May 14 2022 *)
Formula
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} [Omega(k) = Omega(j) = Omega(i) = Omega(n-i-j-k) = 2], where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the (generalized) Iverson bracket.
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^A001358(j)). - Alois P. Heinz, May 21 2021