A340796 a(n) is the smallest number with exactly n divisors that are Brazilian.
1, 7, 14, 24, 40, 48, 60, 84, 140, 144, 120, 168, 252, 700, 240, 336, 560, 360, 420, 672, 1120, 2304, 960, 720, 1008, 1080, 840, 2184, 1800, 1260, 2016, 5376, 8960, 2160, 1680, 2880, 4032, 3600, 7056, 19600, 3960, 2520, 3360, 6480, 9072, 9900, 6300, 11520, 16128
Offset: 0
Examples
Of the eight divisors of 24, three are Brazilian numbers: 8, 12 and 24, and there is no smaller number with three Brazilian divisors, hence a(3) = 24.
Links
- David A. Corneth, Table of n, a(n) for n = 0..427
- David A. Corneth, More terms
- Wikipédia, Nombre brésilien (in French).
- Index entries for sequences related to Brazilian numbers.
Crossrefs
Programs
-
Mathematica
brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; d[n_] := DivisorSum[n, 1 &, brazQ[#] &]; m = 30; s = Table[0, {m}]; c = 0; n = 1; While[c < m, i = d[n]; If[i < m && s[[i + 1]] == 0, c++; s[[i + 1]] = n]; n++]; s (* Amiram Eldar, Jan 21 2021 *)
-
PARI
isokb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134 isok(k, n) = sumdiv(k, d, isokb(d)) == n; a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jan 23 2021
Extensions
More terms from Amiram Eldar, Jan 21 2021
Comments