A340797 Integers whose number of divisors that are Brazilian sets a new record.
1, 7, 14, 24, 40, 48, 60, 84, 120, 168, 240, 336, 360, 420, 672, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 30240, 43680, 45360, 50400, 55440, 65520, 83160, 98280, 110880, 131040, 166320, 196560, 221760, 262080, 277200, 327600
Offset: 1
Examples
40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 4 are Brazilian: {8, 10, 20, 40}. No positive integer smaller than 40 has as many as four Brazilian divisors; hence 40 is a term.
Links
- David A. Corneth, Table of n, a(n) for n = 1..85
- David A. Corneth, Conjectured terms
- Wikipédia, Nombre brésilien (in French).
- Index entries for sequences related to Brazilian numbers.
Crossrefs
Programs
-
Mathematica
brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; d[n_] := DivisorSum[n, 1 &, brazQ[#] &]; dm = -1; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 1000}]; s (* Amiram Eldar, Jan 24 2021 *)
-
PARI
isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134 nbd(n) = sumdiv(n, d, isb(d)); \\ A340795 lista(nn) = {my(m=-1); for (n=1, nn, my(x = nbd(n)); if (x > m, print1(n, ", "); m = x););} \\ Michel Marcus, Jan 24 2021
Extensions
a(20)-a(36) from Michel Marcus, Jan 24 2021
a(37)-a(44) from Amiram Eldar, Jan 24 2021
Comments