cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340812 Array read by antidiagonals: T(n,k) is the number of unlabeled oriented k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 7, 6, 1, 1, 1, 3, 11, 18, 11, 1, 1, 1, 4, 17, 49, 68, 23, 1, 1, 1, 4, 25, 96, 252, 251, 47, 1, 1, 1, 5, 33, 177, 687, 1406, 1020, 106, 1, 1, 1, 5, 43, 285, 1537, 5087, 8405, 4258, 235, 1, 1, 1, 6, 55, 442, 3014, 14310, 40546, 52348, 18580, 551
Offset: 0

Views

Author

Andrew Howroyd, Feb 02 2021

Keywords

Comments

See section 3 of the Labelle reference.

Examples

			Array begins:
=========================================================
n\k |  2    3    4     5      6      7      8       9
----+----------------------------------------------------
  0 |  1    1    1     1      1      1      1       1 ...
  1 |  1    1    1     1      1      1      1       1 ...
  2 |  1    1    1     1      1      1      1       1 ...
  3 |  2    2    3     3      4      4      5       5 ...
  4 |  3    7   11    17     25     33     43      55 ...
  5 |  6   18   49    96    177    285    442     635 ...
  6 | 11   68  252   687   1537   3014   5370    8901 ...
  7 | 23  251 1406  5087  14310  33632  70000  132533 ...
  8 | 47 1020 8405 40546 141582 399065 966254 2089103 ...
  ...
		

Crossrefs

Columns 2..4 are A000055, A303742, A340813.
Cf. A340811 (unoriented case), A340814 (edge-rooted case).

Programs

  • PARI
    \\ here B(n,k) gives column k of A340814.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
    C(n, k)={my(p=B(n,k)); Vec(p - x*p^k + x*sumdiv(k, d, eulerphi(d)*subst(p + O(x*x^(n\d)), x, x^d)^(k/d))/k)}
    { Mat(vector(7, k, C(7, k+1)~)) }

Formula

G.f. of column k: B(x) - x*B(x)^k + x*(Sum_{d|k} phi(d)*B(x^d)^(k/d))/k, where B(x) if the g.f. of column k of A340814.
Showing 1-1 of 1 results.