A340811 Array read by antidiagonals: T(n,k) is the number of unlabeled k-gonal 2-trees with n polygons, n >= 0, k >= 2.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 5, 6, 1, 1, 1, 3, 8, 12, 11, 1, 1, 1, 4, 11, 32, 39, 23, 1, 1, 1, 4, 16, 56, 141, 136, 47, 1, 1, 1, 5, 20, 103, 359, 749, 529, 106, 1, 1, 1, 5, 26, 158, 799, 2597, 4304, 2171, 235, 1, 1, 1, 6, 32, 245, 1539, 7286, 20386, 26492, 9368, 551
Offset: 0
Examples
Array begins: ======================================================= n\k | 2 3 4 5 6 7 8 9 ----+-------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 1 1 ... 3 | 2 2 3 3 4 4 5 5 ... 4 | 3 5 8 11 16 20 26 32 ... 5 | 6 12 32 56 103 158 245 343 ... 6 | 11 39 141 359 799 1539 2737 4505 ... 7 | 23 136 749 2597 7286 16970 35291 66603 ... 8 | 47 529 4304 20386 71094 199879 483819 1045335 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], Dec 23 2003.
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} B(n,k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p} C(p,k)={p(1) - x*p(1)^k + x*sumdiv(k, d, eulerphi(d)*p(d)^(k/d))/k} S(p,k)={my(p2=p(2)); if(k%2, 1+x*Ser(EulerT(Vec(x*p2^(k\2) + x^2*(p2^(k-1) - p(4)^(k\2))/2 ))), my(r=p2^(k/2-1), q=1+O(x)); while(serprec(q,x)
Comments