cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A054581 Number of unlabeled 2-trees with n nodes.

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 12, 39, 136, 529, 2171, 9368, 41534, 188942, 874906, 4115060, 19602156, 94419351, 459183768, 2252217207, 11130545494, 55382155396, 277255622646, 1395731021610, 7061871805974, 35896206800034, 183241761631584
Offset: 1

Views

Author

Vladeta Jovovic, Apr 11 2000

Keywords

Comments

A 2-tree is recursively defined as follows: K_2 is a 2-tree and any 2-tree on n+1 vertices is obtained by joining a vertex to a 2-clique in a 2-tree on n vertices. Care is needed with the term 2-tree (and k-tree in general) because it has at least two commonly used definitions.
A036361 gives the labeled version of this sequence, which has an easy formula analogous to Cayley's formula for the number of trees.
Also, number of unlabeled 3-gonal 2-trees with n 3-gons.

Examples

			a(1)=0 because K_1 is not a 2-tree;
a(2)=a(3)=1 because K_2 and K_3 are the only 2-trees on those sizes.
a(4)=1 because there is a unique example obtained by joining a triangle to K_3 along an edge (thus forming K_4\e). The two graphs on 5 nodes are obtained by joining a triangle to K_4\e, either along the shared edge or along one of the non-shared edges.
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 327-328.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 76, t(x), (3.5.19).

Crossrefs

Column k=3 of A340811, column k=2 of A370770.
Cf. A000272 (labeled trees), A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees).

Extensions

Additional comments from Gordon F. Royle, Dec 02 2002
Missing initial term 0 inserted by Brendan McKay, Aug 07 2023

A340812 Array read by antidiagonals: T(n,k) is the number of unlabeled oriented k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 3, 7, 6, 1, 1, 1, 3, 11, 18, 11, 1, 1, 1, 4, 17, 49, 68, 23, 1, 1, 1, 4, 25, 96, 252, 251, 47, 1, 1, 1, 5, 33, 177, 687, 1406, 1020, 106, 1, 1, 1, 5, 43, 285, 1537, 5087, 8405, 4258, 235, 1, 1, 1, 6, 55, 442, 3014, 14310, 40546, 52348, 18580, 551
Offset: 0

Views

Author

Andrew Howroyd, Feb 02 2021

Keywords

Comments

See section 3 of the Labelle reference.

Examples

			Array begins:
=========================================================
n\k |  2    3    4     5      6      7      8       9
----+----------------------------------------------------
  0 |  1    1    1     1      1      1      1       1 ...
  1 |  1    1    1     1      1      1      1       1 ...
  2 |  1    1    1     1      1      1      1       1 ...
  3 |  2    2    3     3      4      4      5       5 ...
  4 |  3    7   11    17     25     33     43      55 ...
  5 |  6   18   49    96    177    285    442     635 ...
  6 | 11   68  252   687   1537   3014   5370    8901 ...
  7 | 23  251 1406  5087  14310  33632  70000  132533 ...
  8 | 47 1020 8405 40546 141582 399065 966254 2089103 ...
  ...
		

Crossrefs

Columns 2..4 are A000055, A303742, A340813.
Cf. A340811 (unoriented case), A340814 (edge-rooted case).

Programs

  • PARI
    \\ here B(n,k) gives column k of A340814.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
    C(n, k)={my(p=B(n,k)); Vec(p - x*p^k + x*sumdiv(k, d, eulerphi(d)*subst(p + O(x*x^(n\d)), x, x^d)^(k/d))/k)}
    { Mat(vector(7, k, C(7, k+1)~)) }

Formula

G.f. of column k: B(x) - x*B(x)^k + x*(Sum_{d|k} phi(d)*B(x^d)^(k/d))/k, where B(x) if the g.f. of column k of A340814.

A094610 Number of unlabeled 4-gonal 2-trees with n 4-gons.

Original entry on oeis.org

1, 1, 1, 3, 8, 32, 141, 749, 4304, 26492, 169263, 1115015, 7507211, 51466500, 358100288, 2523472751, 17978488711, 129325796854, 938234533024, 6858551493579, 50478955083341, 373815860588360, 2783730088637429, 20835514668765200, 156675846789962554, 1183195305751233833
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=4 of A340811.
Cf. A054581.

Extensions

Terms a(21) and beyond from Andrew Howroyd, May 09 2021

A094611 Number of unlabeled pentagonal 2-trees with n pentagons.

Original entry on oeis.org

1, 1, 1, 3, 11, 56, 359, 2597, 20386, 167819, 1429815, 12500748, 111595289, 1013544057, 9340950309, 87176935700, 822559721606, 7836316493485, 75293711520236, 728968295958626, 7105984356424859, 69697524828651997, 687448151462822966, 6815174949649428254
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=5 of A340811.
Cf. A054581.

Extensions

Terms a(21) and beyond from Andrew Howroyd, May 09 2021

A094637 Number of unlabeled hexagonal 2-trees with n hexagons.

Original entry on oeis.org

1, 1, 1, 4, 16, 103, 799, 7286, 71094, 729974, 7743818, 84307887, 937002302, 10595117272, 121568251909, 1412555701804, 16594126114458, 196829590326284, 2354703777373055, 28385225424840078, 344524656398655124, 4207569734885041198, 51674558137433627724
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=6 of A340811.
Cf. A054581.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 02 2021

A094651 Number of unlabeled heptagonal 2-trees with n heptagons.

Original entry on oeis.org

1, 1, 1, 4, 20, 158, 1539, 16970, 199879, 2460350, 31266165, 407461893, 5420228329, 73352481577, 1007312969202, 14008437540003, 196963172193733, 2796235114720116, 40038505601111596, 577693117173844307, 8392528734991449808, 122680472402091278920, 1803416089912665770579
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=7 of A340811.
Cf. A054581.

Extensions

Terms a(20) and beyond from Andrew Howroyd, Feb 02 2021

A094652 Number of unlabeled octagonal 2-trees with n octagons.

Original entry on oeis.org

1, 1, 1, 5, 26, 245, 2737, 35291, 483819, 6937913, 102666626, 1558022255, 24133790815, 380320794122, 6081804068869, 98490990290897, 1612634990857755, 26660840123167203, 444560998431678554, 7469779489114328514, 126375763235359105446, 2151342943131421629636
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=8 of A340811.
Cf. A054581.

Extensions

Terms a(20) and beyond from Andrew Howroyd, Feb 02 2021

A094653 Number of unlabeled 9-gonal 2-trees with n 9-gons.

Original entry on oeis.org

1, 1, 1, 5, 32, 343, 4505, 66603, 1045335, 17115162, 289107854, 5007144433, 88516438360, 1591949961503, 29053438148676, 536972307386326, 10034276171127780, 189331187319203010, 3603141751525175854, 69097496637591215442, 1334213677527481808220, 25922717218623692348237
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=9 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021

A094654 Number of unlabeled 10-gonal 2-trees with n 10-gons.

Original entry on oeis.org

1, 1, 1, 6, 39, 482, 7053, 117399, 2070289, 38097139, 723169329, 14074851642, 279609377638, 5651139037570, 115901006038377, 2407291353219949, 50553753543016719, 1071971262516091572, 22926544048209731554, 494103705426160765546, 10722146465907412669810
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=10 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021

A094655 Number of unlabeled 11-gonal 2-trees with n 11-gons.

Original entry on oeis.org

1, 1, 1, 6, 46, 636, 10527, 194997, 3823327, 78118107, 1646300388, 35570427615, 784467060622, 17601062294302, 400750115756742, 9240636709048733, 215435023547580882, 5071520482516388865, 120417032326341878672, 2881134828445365441407, 69410468220307148620226
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Column k=11 of A340811.
Cf. A054581.

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 02 2021
Showing 1-10 of 12 results. Next