cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340814 Array read by antidiagonals: T(n,k) is the number of unlabeled oriented edge-rooted k-gonal 2-trees with n oriented polygons, n >= 0, k >= 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 9, 1, 1, 5, 19, 39, 20, 1, 1, 6, 31, 107, 160, 48, 1, 1, 7, 46, 229, 647, 702, 115, 1, 1, 8, 64, 421, 1832, 4167, 3177, 286, 1, 1, 9, 85, 699, 4191, 15583, 27847, 14830, 719, 1, 1, 10, 109, 1079, 8325, 44322, 137791, 191747, 70678, 1842
Offset: 0

Views

Author

Andrew Howroyd, Feb 02 2021

Keywords

Comments

See section 2 of the Labelle reference.

Examples

			Array begins:
============================================================
n\k |   2     3      4       5       6        7        8
----+-------------------------------------------------------
  0 |   1     1      1       1       1        1        1 ...
  1 |   1     1      1       1       1        1        1 ...
  2 |   2     3      4       5       6        7        8 ...
  3 |   4    10     19      31      46       64       85 ...
  4 |   9    39    107     229     421      699     1079 ...
  5 |  20   160    647    1832    4191     8325    14960 ...
  6 |  48   702   4167   15583   44322   105284   220193 ...
  7 | 115  3177  27847  137791  487662  1385888  3374267 ...
  8 | 286 14830 191747 1255202 5527722 18795035 53275581 ...
  ...
		

Crossrefs

Columns k=2..6 are A000081(n+1), A005750(n+1), A052751, A052773, A052781.

Programs

  • PARI
    \\ here B(n,k) gives g.f. of k-th column.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, k)={my(p=1+O(x)); for(n=1, n, p=1+x*Ser(EulerT(Vec(p^(k-1))))); p}
    { Mat(vector(7, k, Col(B(7, k+1)))) }

Formula

Column k is the Euler transform of column k+1 of A242249.
G.f. of column k: A(x) satisfies A(x) = exp(Sum_{i>0} x^i*A(x^i)^(k-1)/i).