A340853 Number of factorizations of n such that every factor is a multiple of the number of factors.
0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 4, 16, 48, 96, 144, 216, 240, 432: 2 4 16 48 96 144 216 240 432 2*2 2*8 6*8 2*48 2*72 4*54 4*60 6*72 4*4 2*24 4*24 4*36 6*36 6*40 8*54 4*12 6*16 6*24 12*18 8*30 12*36 8*12 8*18 2*108 10*24 18*24 12*12 6*6*6 12*20 2*216 3*3*24 2*120 4*108 3*6*12 3*3*48 3*6*24 6*6*12 3*12*12
Crossrefs
Positions of 1's are A048103.
Positions of terms > 1 are A100716.
The version for strict partitions is A340830.
The reciprocal version is A340851.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
- Factorizations -
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],n>1&&Divisible[GCD@@#,Length[#]]&]],{n,100}]
Comments