cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340866 Decimal expansion of the Mertens constant C(5,4).

Original entry on oeis.org

1, 2, 9, 9, 3, 6, 4, 5, 4, 7, 9, 1, 4, 9, 7, 7, 9, 8, 8, 1, 6, 0, 8, 4, 0, 0, 1, 4, 9, 6, 4, 2, 6, 5, 9, 0, 9, 5, 0, 2, 5, 7, 4, 9, 7, 0, 4, 0, 8, 3, 2, 9, 6, 6, 2, 0, 1, 6, 7, 8, 1, 7, 7, 0, 3, 1, 2, 9, 2, 2, 8, 7, 8, 8, 3, 5, 4, 4, 0, 3, 5, 8, 0, 6, 4, 7, 6, 4, 7, 6, 9, 7, 6, 7, 6, 5, 7, 9, 3, 0, 2, 9, 4, 0, 9, 3, 5, 5, 0, 7, 6, 3, 7, 3, 7, 4, 3, 2, 1, 5, 4, 2, 7, 1, 1, 9, 0, 7, 0, 3, 3, 5, 4, 0, 9, 8, 6, 0, 6, 1, 4, 5, 0, 3, 2, 9, 7, 2, 5, 8, 8, 4, 3, 6, 1, 1, 5, 9, 8
Offset: 1

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Data taken from Alessandro Languasco and Alessandro Zaccagnini 2007 p. 4.

Examples

			1.299364547914977988160840014964265909502574970408329662016...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95).

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[(13*Pi^2 / (24*Sqrt[5] * Exp[EulerGamma] * Log[(1 + Sqrt[5])/2]) * Z[5, 1, 2]^2 / (Z[5, 1, 4] * Z[5, 4, 4]))^(1/4)]

Formula

Equals A340839*5^(1/4)*sqrt(A340004/(2*A340127)).
Equals (13*Pi^2/(24*sqrt(5)*exp(gamma)*log((1+sqrt(5))/2))*A340629/A340809)^(1/4). - Vaclav Kotesovec, Jan 25 2021

Extensions

Corrected by Vaclav Kotesovec, Jan 25 2021
More digits from Vaclav Kotesovec, Jan 26 2021