cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340869 Numbers k such that the determinant of the 3 X 3 matrix [prime(k),prime(k+1),prime(k+2); prime(k+3),prime(k+4),prime(k+5); prime(k+6),prime(k+7),prime(k+8)] is a square.

Original entry on oeis.org

4, 12, 14, 131, 222, 229, 330, 351, 356, 525, 561, 825, 969, 979, 1009, 1115, 1123, 1243, 1722, 1826, 2221, 2632, 2673, 2814, 3167, 3436, 3437, 3966, 4056, 4307, 4583, 5010, 5137, 5509, 5772, 6031, 6034, 6230, 6233, 6363, 6505, 6532, 6794, 7112, 7551, 8154, 8330, 8476, 9260, 9348, 9349, 9613
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 24 2021

Keywords

Comments

Numbers k such that A117330(k) is a square.

Examples

			a(3) = 14 is a term because A117330(14) = Determinant([43,47,53; 59,61,67; 71,73,79]) = 144 = 12^2.
		

Crossrefs

Cf. A117330, A340874. Includes A117345.

Programs

  • Maple
    f:= proc(n) local i; LinearAlgebra:-Determinant(Matrix(3,3,[seq(ithprime(i),i=n..n+8)])) end proc:
    select(t -> issqr(f(t)), [$1..10000]);
  • Mathematica
    okQ[k_] := IntegerQ@ Sqrt@ Det@ Partition[Prime[k+#]& /@ Range[0, 8], 3];
    Select[Range[10000], okQ] (* Jean-François Alcover, Feb 10 2023 *)
  • PARI
    isok(k) = issquare(matdet(matrix(3,3,i,j,prime((k+j-1)+3*(i-1))))); \\ Michel Marcus, Jan 25 2021
    
  • Python
    from sympy import nextprime, Matrix, integer_nthroot
    k,A340869_list, plist = 1,[], [2, 3, 5, 7, 11, 13, 17, 19, 23]
    while k < 10**7:
        d = Matrix(plist).reshape(3,3).det()
        if d >= 0 and integer_nthroot(d,2)[1]:
            A340869_list.append(k)
        k,plist = k+1,plist[1:]+[nextprime(plist[-1])] # Chai Wah Wu, Jan 25 2021