A340872 Primes p such that p, p - 1, p - 2 and p - 3 have 2, 4, 6 and 8 divisors respectively.
1019, 226379, 645419, 893099, 967259, 1744859, 1880939, 1996859, 2238779, 2435339, 2999099, 3316619, 3734219, 4092059, 4269899, 4344779, 4511099, 4681739, 4692539, 5857499, 5993579, 6476699, 6744539, 6848939, 6855419, 8160059, 8608619, 8755499, 9254459
Offset: 1
Keywords
Examples
tau (1016) = 8, tau(1017) = 6, tau(1018) = 4, tau(1019) = 2.
Programs
-
Magma
[m: m in [1..10^7] | IsPrime(m) and #Divisors(m - 1) eq 4 and #Divisors(m - 2) eq 6 and #Divisors(m - 3) eq 8]
-
Mathematica
Select[Range[10^6], DivisorSigma[0, # - {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *) Select[Prime[Range[620000]],DivisorSigma[0,#-{0,1,2,3}]=={2,4,6,8}&] (* Harvey P. Dale, Nov 19 2021 *)
Comments