A340899 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(4,n) (with n at least 4) missing three edges, where all three removed edges are incident to the same vertex in the 4-point set.
2426, 57152, 1014458, 16353152, 253359866, 3857162432, 58255767098, 876627759872, 13168963989626, 197671319438912, 2966027888106938, 44497125235352192, 667503827640776186, 10012886060527865792, 150195591435759857978, 2252949975250575898112
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (26,-196,486,-315).
Crossrefs
Formula
a(n) = 343*15^(n-3) - 424*7^(n-3) + 28*3^(n-2) - 3.
From Stefano Spezia, Jan 26 2021: (Start)
G.f.: 2*x^4*(1213 - 2962*x + 2001*x^2)/(1 - 26*x + 196*x^2 - 486*x^3 + 315*x^4).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n > 7. (End)
Comments