A340901 Additive with a(p^e) = (-p)^e.
0, -2, -3, 4, -5, -5, -7, -8, 9, -7, -11, 1, -13, -9, -8, 16, -17, 7, -19, -1, -10, -13, -23, -11, 25, -15, -27, -3, -29, -10, -31, -32, -14, -19, -12, 13, -37, -21, -16, -13, -41, -12, -43, -7, 4, -25, -47, 13, 49, 23, -20, -9, -53, -29, -16, -15, -22, -31
Offset: 1
Keywords
Examples
a(20) = a(2^2*5) = (-2)^2 + (-5) = -1.
Links
- Sebastian Karlsson, Table of n, a(n) for n = 1..10000
- R. E. Dressler, A stronger Bertrand's postulate with an application to partitions, Proc. Amer. Math. Soc., 33 (1972), 226-228.
Programs
-
Mathematica
a[n_] := Total@ (((-First[#])^Last[#]) & /@ FactorInteger[n]); a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, (-f[k,1])^f[k,2]); \\ Michel Marcus, Jan 26 2021 (APL, Dyalog dialect) A340901 ← {1=⍵:0 ⋄ +/{(-⍺)*≢⍵}⌸factors(⍵)} ⍝ Needs also factors function from https://dfns.dyalog.com/c_factors.htm - Antti Karttunen, Feb 16 2024
-
Python
from sympy import primefactors as pf, multiplicity as mult def a(n): return sum([(-p)**mult(p, n) for p in pf(n)]) for n in range(1, 59): print(a(n), end=', ')
Comments