cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340914 Square array, read by rows. For n,d >= 0, a(n,d) is the number of congruences of the d-twisted partition monoid of degree n.

Original entry on oeis.org

2, 3, 3, 9, 7, 4, 12, 43, 14, 5, 16, 76, 136, 24, 6, 19, 134, 329, 334, 37, 7, 22, 188, 773, 1105, 696, 53, 8, 25, 251, 1281, 3456, 3100, 1294, 72, 9, 28, 323, 1969, 6754, 12806, 7608, 2213, 94, 10, 31, 404, 2864, 11930, 29413, 41054, 16842, 3551, 119, 11, 34, 494, 3993, 19578, 59547, 110312, 117273, 34353, 5419, 147, 12
Offset: 0

Views

Author

James East, Mar 07 2021

Keywords

Comments

The d-twisted partition monoids P_{n,d} are defined in the East-Ruškuc paper cited below.

Examples

			Array begins:
=========================================================
n\d |  0   1    2     3      4      5       6       7 ...
----+----------------------------------------------------
  0 |  2   3    4     5      6      7       8       9 ...
  1 |  3   7   14    24     37     53      72      94 ...
  2 |  9  43  136   334    696   1294    2213    3551 ...
  3 | 12  76  329  1105   3100   7608   16842   34353 ...
  4 | 16 134  773  3456  12806  41054  117273  304889 ...
  5 | 19 188 1281  6754  29413 110312  366724 1103538 ...
  6 | 22 251 1969 11930  59547 255132  965409 3293916 ...
  7 | 25 323 2864 19578 110012 529298 2242845 8544569 ...
  ...
		

Programs

  • PARI
    T(n,d) = {if(n<=3, if(n<=1, if(n<=0, if(n==0, d+2), (3*d^2+5*d+6)/2), if(n==2, (13*d^4+106*d^3+299*d^2+398*d+216)/24, (13*d^7+322*d^6+3262*d^5+17920*d^4+58597*d^3+115318*d^2+127128*d+60480)/5040)), binomial(3*n+d-4,3*n-5) + 8*binomial(3*n+d-1,3*n-1) +2*binomial(3*n+d-2,3*n-1) + 5*binomial(3*n+d-3,3*n-1) - 2*binomial(3*n+d-4,3*n-1))} \\ Andrew Howroyd, Jan 06 2024

Formula

a(0,d) = d+2,
a(1,d) = (3*d^2+5*d+6)/2,
a(2,d) = (13*d^4+106*d^3+299*d^2+398*d+216)/24,
a(3,d) = (13*d^7+322*d^6+3262*d^5+17920*d^4+58597*d^3+115318*d^2+127128*d+60480)/5040,
a(n,d) = binomial(3*n+d-4,3*n-5) + 8*binomial(3*n+d-1,3*n-1) + 2*binomial(3*n+d-2,3*n-1) + 5*binomial(3*n+d-3,3*n-1) - 2*binomial(3*n+d-4,3*n-1) for n >= 4.
For fixed d >= 0, a(n,d) is asymptotic to (3*n)^(d+1) / (d+1)!.
For fixed n >= 4, a(n,d) is asymptotic to 13*d^(3*n-1) / (3*n-1)!.
A rational generating function is given in the East-Ruškuc paper, and also polynomial expressions for a(n,d) with d fixed (and n >= 4).