A340923 4*a(n) is the maximum possible determinant of a 3 X 3 matrix whose entries are 9 consecutive primes starting with prime(n).
1660, 2693, 3894, 5712, 7030, 9155, 10369, 11718, 14480, 16185, 18774, 20070, 22920, 24720, 23895, 26800, 31560, 39117, 43080, 43245, 42132, 38406, 41056, 48204, 66144, 69006, 86556, 98499, 99021, 88999, 77640, 87348, 86745, 89832, 92466, 95277, 98454, 84820
Offset: 1
Keywords
Examples
a(1) = 1660 = A180128(3)/4 with the corresponding matrix shown in A180128. a(2) = 2693: determinant ( [13 29 7] [ 3 11 23] [19 5 17]) = 10772 = 4*2693.
Programs
-
Mathematica
Table[Max[Det[Partition[#,3]]&/@Permutations[Prime[Range[n,n+8]]]],{n,40}]/4 (* Harvey P. Dale, Jul 21 2021 *)
Comments